Skip to main content

COLD REGIONS HYDROGEOPHYSICS: PHYSICAL CHARACTERISATION AND MONITORING

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

The use of geophysical methods to characterize distribution of continuous and discontinuous permafrost has been widely applied (e.g. Arcone et al., 1998; Sullivan et al., 2000; Hauck et al., 2001; Hinkel et al., 2001; Moorman et al., 2003) including ground penetrating radar (GPR), electrical resistivity (ER) and electromagnetic (EM) sounding. Different methods have been employed to study water movement in frozen soils: time domain reflectrometry (TDR), electrical resistivity (ER), EM soundings and self potential (SP). In this chapter the main focus is on the use of geophysical methods to solve hydrological problems in areas with frozen conditions, but also includes examples of characterisation of structures in the permafrost which have an importance for hydrogeological processes in these regions. Frozen and thawed structures in the subsurface may cause water and contaminant pathways which are not intuitively based on traditional soil stratification procedures. Because these structures are temperature dependent there may also be a need to monitor spatio-temporal changes in these structures in order to assess how they may affect flow paths in the ground. Time-lapse measurements may hence be required. To study changes in the soilwater system under frozen or partially frozen conditions can be a challenge; soil water sampling equipment may freeze and destructive methods such as conventional soil sampling is impossible under frozen conditions. The objective of conducting various geophysical methods in a hydrological perspective is to describe flow paths and to improve models for water and solute transport under partially frozen conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexeev, S.V., and L.P. Alexeeva, 2003. Hydrogeochemistry of the permafrost zone in the central part of the Yakutian diamond-bearing province, Russia. Hydrogeol. J., 11, 574–581.

    Article  Google Scholar 

  • Anandakrishnan, S., 2003. Dilatant till layer near the onset of streaming flow of Ice Stream C, West Antarctica, determined by AVO (amplitude vs. offset) analysis, Ann. Glaciol., 36, 283–286.

    Google Scholar 

  • Anisimov, M.A., and R.U. Tankaev, 1981. Ice melting nearby hydrophilic surface. J. Exp. Theor. Phys., 81, 1 (7), 217–225. (In Russian)

    Google Scholar 

  • Arcone, S.E., A.J. Lawson, J.C. Delaney, J.C. Strasser, and J.D. Strasser, 1998. Ground-penetrating radar reflection profiling of groundwater and bedrock in areas of discontinuous permafrost, Geophysics, 63 (5), 1573–1584.

    Article  Google Scholar 

  • Atre, S.R., and C.R. Bentley, 1993. Laterally varying basal conditions under ice streams B and C, West Antarctica, J. Glaciol., 39 (133), 507–514.

    Google Scholar 

  • Atre, S.R., and C.R. Bentley, 1994. Indication of a dilatant bed near Downstream B Camp, Ice Stream B, Antarctica, Ann. Glaciol., 20, 177–182.

    Google Scholar 

  • Baker, J. M., and E.J.A. Spaans, 1997. Mechanics of meltwater movement above and within frozen soil, edited by I.K. Iskandar, E.A. Wright, J.K. Radke, B.S. Sharratt, P.H. Groenvelt, and L.D. Hinzman, in International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, U.S. Army Cold Reg. Research and Engineering Company, Fairbanks, AK, 10-12.06., pp. 31–36.

    Google Scholar 

  • Benn, D.I., and D.J.A. Evans, 1997. In Glaciers and Glaciation, edited by Hodder and Arnold, Oxford University Press, Oxford, 760 p.

    Google Scholar 

  • Bennett, M.R., and N.F. Glasser, 1996. Glacial Geology: Ice Sheets and Landforms, Wiley, 376 p.

    Google Scholar 

  • Binley, A., A. Ramirez, and W. Daily, 1995. Regularised image reconstruction of noisy electrical resistance tomography data, edited by M.S. Beck, B.S. Hoyle, M.A. Morris, R.C. Waterfall, and R.A. Williams, Process Tomography – 1995, in Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, 6–8 April 1995, pp. 401–410.

    Google Scholar 

  • Blake, E.W., and G.K.C. Clarke, 1999. Subglacial electrical phenomena, J. Geophys. Res., 104 (B4), 7481–7495.

    Article  Google Scholar 

  • Blokh, Yu.I., C.A. Velikin, I.A. Dobrokhotova, and I.V. Renard, 1996. Delineation of the zones of mine water burring by low frequency inductive electrical prospecting, Geophysics, 3, 48–50.

    Google Scholar 

  • Boyer, E.W., G.M. Hornberger, K.E. Bencala, and D.M. McKnight, 2000. Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approach, Hydrol. Process., 14, 3291–3308.

    Article  Google Scholar 

  • Bradford, J.H., J.P. McNamara, W. Bowden, M.N. Gooseff, 2005. Measuring depth beneath peat-lined arctic streams using ground penetrating radar, Hydrol. Process., 19 (14), 2689–2699

    Article  Google Scholar 

  • Brand, G., V. Pohjola, and R.L. Hooke, 1987. Evidence for a till layer beneath Storglaciären, Sweden, based on electrical resistivity measurements, J. Glaciol., 33 (115), 311–314.

    Google Scholar 

  • Charykova, M.V., and N.A. Charykov, 2003. Thermodynamical Modeling of Evaporite Sedimentation, Nauka, St. Petersburg, 262 p.

    Google Scholar 

  • Cole, K.S., and R.H. Cole, 1941. Dispersion and absorbtion in dielectrics, J. Chem. Phys., 9, 341–350.

    Article  Google Scholar 

  • Copland, L., and M. Sharp, 2001. Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding, J. Glac., 47 (157), 232–242.

    Google Scholar 

  • Debye P., 1929. Polar Molecules, The Chemical Catalogue Company, Inc., New York.

    Google Scholar 

  • Derby, N.E., and R.E. Knighton, 1997. Frozen soil effects on depression focused water and solute movement, edited by I.K. Iskandar, E.A.Wright, J.K. Radke, B.S. Sharratt, P.H. Groenvelt, and L.D. Hinzman, in International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils, U.S. Army Cold Reg. Research and Engineering Company, Fairbanks, AK, 10-12.06, pp. 113–119.

    Google Scholar 

  • Ershov, E.D., 1979. Water Transport and Cryogenic Structures in Dispersive Systems, Moscow University Press, Moscow, 213 p. (in Russian)

    Google Scholar 

  • Feldman, G.M., 1988. Water Movement in Thawed and Freezing Soils, Novosibirsk, Nauka, 257 p.

    Google Scholar 

  • Flis, M.F., G.A. Newman, and G.W. Hohman, 1989. Induced polarization effects in time-domain electromagnetic measurements, Geophysics, 9 (4), 514–523.

    Article  Google Scholar 

  • Fountain, A.G., and J.S. Walder, 1998. Water flow through temperate glaciers, Rev. Geophys., 36 (3), 299–328.

    Article  Google Scholar 

  • Freeze, R.A., and J.A. Cherry, 1979. Groundwater, Prentice-Hall, Englewood Cliffs, NJ, 604 p.

    Google Scholar 

  • French, H. K., B. Swensen, J.-O. Englund, K.-F. Meyer, and S.E.A.T.M. van der Zee, 1994. A lysimeter trench for reactive pollutant transport studies, in Future Groundwater Resources at Risk, edited by J. Soveri, and T. Suokko, IAHS Publication, Vol. 222, pp. 131–138.

    Google Scholar 

  • French, H.K., and A. Binley, 2004. Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity, J. Hydrol., 297 (1–4), 174–186.

    Article  Google Scholar 

  • French, H.K., and S.E.A.T.M. Van der Zee, 1999. Field scale observations of small scale spatial variability of snowmelt drainage and infiltration, Nord. Hydrol., 30, 166–176.

    Google Scholar 

  • French, H.K., C. Hardbattle, A. Binley, P. Winship, L. Jakobsen, 2002. Monitoring snowmelt induced unsaturated flow and transport using electrical resisitivity tomography, J. Hydrol., 267, 273–284.

    Article  Google Scholar 

  • French, H.K., S.E.A.T.M. Van der Zee, and A. Leijnse, 1999. Differences in gravity dominated unsaturated flow during autumn rains and snowmelt, Hydrol. Process. 13 (17), 2783–2800.

    Article  Google Scholar 

  • French, H.K., S.E.A.T.M. Van der Zee, and A. Leijnse, 2001. Transport and degradation of propyleneglycol and potassium acetate in the unsaturated zone, J.Contam. Hydrol., 49, 23–48.

    Article  Google Scholar 

  • Frolov, A.D. 1998. Electric and Elastic Properties of Frozen Earth Materials. Pushchino. ONTI PSC RAS. 515 p. (In Russian)

    Google Scholar 

  • Frolov, A.D., O.P. Chervinskaya, and Yu.A. Zykov 1997. Particularieties of frozen soils electric and elastic properties, in Proceedings of International Symposium on Ground Freezing 97, Lulea, Sweden, pp. 385–390.

    Google Scholar 

  • Fujita, S., S. Mae, and T. Matsuoka, 1993. Dielectric anisotropy in ice at 9.7 GHz, Ann. Glaciol., 17, 276–280.

    Google Scholar 

  • Gordon, S., M.J. Sharp, B. Hubbard, C.C. Smart, B. Ketterling, and I.C. Willis, 1998. Seasonal reorganisation of subglacial drainage inferred from measurements in boreholes, Hydrol. Process., 12, 105–133.

    Article  Google Scholar 

  • Gorelic Ya. B., and B.S. Kolunin, 2002. Physics and modeling of cryogenic processes in lithosphere. Novosibirsk, Siberian Branch of RAS, 317 p. (in Russian)

    Google Scholar 

  • Granger, R.J., D.M. Gray, and G.E. Dyck, 1984. Snowmelt infiltration into a frozen prairie soils. Can. J. Earth Sci., 21, 669–677.

    Google Scholar 

  • Grant, S.A., and I.K. Iskandar (eds), 2000. Contaminant Hydrology: Cold regions modelling, Lewis, Florida, 246 p.

    Google Scholar 

  • Gray, D.M., R.J Granger, and G.E. Dyck, 1985. Overwinter soil moisture changes, Trans. Am. Soc. Agric. 28829, 442–447.

    Google Scholar 

  • Grechishev, S.E., L.V. Chistodinov, and Yu. L. Shuhr, 1984. Basis for Cryogenic Processes Modeling, Moscow, Nauka, 230 p. (in Russian).

    Google Scholar 

  • Hambrey, M., and J. Alean, 1992. Glaciers, Cambridge University Press, Cambridge, MA, 394 p.

    Google Scholar 

  • Harbor, J., M.J. Sharp, L. Copland, B. Hubbard, P. Nienow, and D. Mair, 1997. Influence of subglacial drainage conditions on the velocity distribution within a glacier cross-section, Geology, 25 (8), 739–742.

    Article  Google Scholar 

  • Hauck, C., M. Guglielmin, K. Isaksen, and D. Vonder Muhll, 2001. Applicability of frequency-domain and time-domain methods for mountain permafrost studies, Permafrost Periglac. Process., 12, 39–52.

    Article  Google Scholar 

  • Hauck, C., and Kneisel, 2003. Application of a capacitively coupled resistivity system for mountain permafrost studies and implications for the interpretation of resistivity values, in 8th International conf. on permafrost Ext. abstracts on current res. and newly available info. International Permafrost Association, Zurich, Switzerland, 21–25 July 2003.

    Google Scholar 

  • Hayashi, M., G. van der Kamp, and R. Schmidt, 2003. Focused infiltration of snowmelt water in partially frozen soil under small depressions, J. Hydrol., 270, 214–229.

    Article  Google Scholar 

  • Hinkel, K.M., J.A. Doolittle, J.G. Bockheim, F.E. Nelson, R. Paetzold, J.M. Kimble, and R. Travis, 2001, Detection of subsurface permafrost features with ground-penetrating radar, Barrow, AK, Permafrost Periglac. Process., 12 (2), 179–190.

    Google Scholar 

  • Hobbs, P.V. 1974. Ice physics, Clarendon, Oxford, 837 p.

    Google Scholar 

  • Hoekstra, P., and D. McNeill, 1973. Electromagnetic probing of permafrost, in 2nd International conference on permafrost, Proceedings, National academy of sciences, Washington, DC, pp. 517–526.

    Google Scholar 

  • Hooke, R.L., 1989. Englacial and subglacial hydrology: a qualitative review, Arctic Alpine Res., 21, 221–233

    Article  Google Scholar 

  • Hubbard, B., and P. Nienow, 1997. Alpine subglacial hydrology, Q. Sci. Rev., 16, 939–955.

    Article  Google Scholar 

  • Hubbard, B., A. Binley, L. Slater, R. Middleton, and B. Kulessa, 1998. Inter-borehole electrical resistivity imaging of englacial drainage, J. Glaciol., 44 (147), 429–434.

    Google Scholar 

  • Hubbard, B., M.J. Sharp, I.C. Willis, M.K. Nielsen, and C.C. Smart, 1995. Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland, J. Glaciol., 41 (139), 572–583.

    Google Scholar 

  • Humlum, O. and Matsuoka, N, 2004. A handbook on periglacial field methods, International Permafrost Association, The working group on Periglacial Proc. and Environment, 82 p.

    Google Scholar 

  • Ippisch, O., 2001. Coupled transport in natural porous media, PhD dissertation, Combined Faculties for the Natural Sciences and for Mathematics of the Rupertus Carola University, Heidelberg, Germany, 123 p.

    Google Scholar 

  • Jacoby, M., J. Dvorkin, and X. Liu, 1996. Elasticity of partially saturated frozen sand, Geophysics, 61 (1), 288–293.

    Article  Google Scholar 

  • Jansson, P.-E. 1991. Simulation model for soil water and heat conditions, Description of the SOIL model. Swedish University of Agricultural Sciences. Department of Soil Sciences. 1991;1 Communications 91:71, 165 p.

    Google Scholar 

  • Johansen, T.A., P. Digranes, M. van Schaack, and I. Lønne, 2003. Seismic mapping and modeling of near-surface sediments in polar areas, Geophysics, 68 (2), 566–573

    Article  Google Scholar 

  • Johnsson, H. and Lundin, L.-C., 1991. Surface runoff and soil water percolation as affected by snow and soil frost, J. Hydrol., 122, 141–159.

    Article  Google Scholar 

  • Jonscher, A.K. 1990. The “Universal” Dielectric Response: Part I, IEEE Electr. Insul. Mag., 6, 2.

    Google Scholar 

  • Kane, D.L., and J. Stein, 1983. Water movement into seasonally frozen soils. Water Resour. Res., 19, 1544–1557.

    Article  Google Scholar 

  • King, E., J. Woodward, and A.M. Smith, 2004. Seismic evidence for a water-filled canal in deforming till beneath Rutford ice stream, West Antarctica, Geophys. Res. Lett., 31, doi:10.1029/2004GL020379

    Google Scholar 

  • Kiryukhin, V.A., N.B. Nikitina, and S.M. Sudarikov, 1989. Hydrogeochemistry of faulted regions. Nedra, Leningrad, 253 p. (in Russian).

    Google Scholar 

  • Kozevnikov, N.O., and S.P. Nikiforov, 1995. Investigations of the fast IP process in permafrost. Geoecology, 2, 118–126. (In Russian)

    Google Scholar 

  • Krylov, S.S., and Bobrov N. Yu., 1998. Anomalous electrical properties of saline permafrost jn the Yamal Peninsula, North-West Siberia, from field electromagnetic survey, in Proc. of the VIIth Int.Conf. on Permafrost, Yellowknife, pp. 611–616.

    Google Scholar 

  • Kulakov, V.V. 1990. Groundwater for water supply in Priamurie. Vladivostok, Russian Academy of Science, 152 p. (in Russian)

    Google Scholar 

  • Kulessa, B., 2000. Geophysical borehole investigations of subglacial drainage conditions at Haut Glacier d’Arolla, Switzerland, Ph.D. thesis, University of Wales, Aberystwyth.

    Google Scholar 

  • Kulessa, B., and B. Hubbard, 1997. Interpretation of borehole impulse tests at Haut Glacier d’Arolla, Switzerland, Ann. Glaciol., 24, 397–402.

    Google Scholar 

  • Kulessa, B., B. Hubbard, and G.H. Brown, 2003a. Cross-coupled flow modelling of coincident streaming and electrochemical potentials, and application to subglacial self-potential (SP) data, J. Geophys. Res., 108 (B8), doi: 10.109/2001JB1167.

    Google Scholar 

  • Kulessa, B., B. Hubbard, G.H. Brown, and J. Becker, 2003b. Earth tide forcing of glacier drainage, Geophys. Res. Lett., 30 (1, 1011), doi: 10.1029/2002GL015303.

    Google Scholar 

  • Kulessa, B., B. Hubbard, and G.H. Brown, 2006. Time-lapse imaging of subglacial drainage conditions using 3-D inversion of subglacial electrical resistivity data, J. Glaciol., 52 (176), 49–57.

    Google Scholar 

  • Kulessa, B., B. Hubbard, M. Williamson, and G.H. Brown, 2005. Hydrogeological analysis of slug tests in glacier boreholes, J. Glaciol., 51 (173), 269–280.

    Google Scholar 

  • LaBrecque, D.J., M. Miletto, W. Daily, A. Ramirez, and E. Owen, 1996. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics, 61, 538–548.

    Article  Google Scholar 

  • Lewis, L.M., Jr., and M.C. Grant, 1979. Relationship between discharge and yield of dissolved substances from a mountain watershed, Soil Sci. 128, 353–363.

    Article  Google Scholar 

  • Maeno, N., T. Araki, J. Moore, and M. Fakuda, 1992. Dielectric response of water and ice in frozen Soils. Phys. and Chem. Office, Hokkaido Univ. Press, Sapporo, Japan, pp. 381–386.

    Google Scholar 

  • Mair, D., I. Willis, U.H. Fischer, B. Hubbard, P. Nienow, and A. Hubbard, 2003. Hydrological controls on patterns of surface, internal, and basal motion during three spring events: Haut Glacier d’Arolla, Switzerland, J. Glaciol., 49 (167), 555–567.

    Google Scholar 

  • Mair, D., P. Nienow, M.J. Sharp, T. Wohlleben, and I.C. Willis, 2002. Influence of subglacial system evolution on glacier surface motion: Haut Glacier d’Arolla, Switzerland, J. Geophys. Res., 107 (B8), doi: 10.1029/2001JB000514.

    Google Scholar 

  • Marion G.M., and Farren R. 1999. Mineral solubilities in the Na–K–Mg–Ca–C–H2O–SO4 system: A re-evaluation of the sulfate chemistry in the Spencer–Møller–Weare model. Geochim. Cosmochim. Acta, 63 (9), 1305–1318.

    Article  Google Scholar 

  • Middleton, R.T., 2000. Hydrogeological characterisation using high resolution electrical resistivity and radar tomographic imaging, PhD Thesis, Lancaster University, UK, 500 p.

    Google Scholar 

  • Mironenko, V.A., and F.G. Atroschenko, 2000. Hydrogeological problems in developing the diamont-bearing deposits in Northern regions of Russia, in Contaminant Hydrology. Cold Region Modeling, edited by S.A. Grant and I.K. Iskandar, Lewis, Florida, pp. 65–74.

    Google Scholar 

  • Moorman, B.J., S.D Robinson, and M.M. Burgess, 2003. Imaging periglacial conditions with ground-penetrating radar, Permafrost Periglac. Process., 14, 319–329.

    Article  Google Scholar 

  • Nolan, M., and Echelmeyer, K., 1999. Seismic detection of transient changes beneath Black Rapids Glacier, Alaska, U.S.A.: I. Techniques and observations, J. Glaciol., 45 (149), 119–131 and in: II. Basal morphology and processes, J. Glaciol., 45 (149), 132–147.

    Google Scholar 

  • Olhoeft, G.R. 1985. Low frequency electrical properties, Geophysics, 50(12), 2492–2503.

    Article  Google Scholar 

  • Parkhomenko, E.I., 1967, Electrical properties of rocks, New York, Plenum, 314 p.

    Google Scholar 

  • Paterson, W.S.B., 1994. The Physics of Glaciers, Pergamon, Oxford, 390 p.

    Google Scholar 

  • Pelsh, A.D. (ed.), 1973. Handbook on Solubility in Salt Systems, Vol. 1, Ternary Systems, Leningrad, Khimia issue 1. pp. 1–568, issue. 2, pp. 569–1070. (in Russian)

    Google Scholar 

  • Pelton, W.H., S.H. Ward, P.G. Hallof, W.R. Sill, P.H. Nelson, 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43 (3), 588–609.

    Article  Google Scholar 

  • Petrenko, V.F. 1993. Electrical properties of ice, USA CRREL. Spec. Rep. 93–20, 659 p.

    Google Scholar 

  • Ponomariov, V.M. 1960. Groundwater at the territories with high thickness permafrost zone. Russian Academy of Sciences Press, Moscow, 199 p.

    Google Scholar 

  • Post, A., and E. LaChapelle, 2000. Glacier ice, University of Toronto Press, Toronto, 166 p.

    Google Scholar 

  • Revil, A., and L.M. Cathles III, 1999. Permeability of shaly sands, Water Resour. Res., 125 (3), 651–662.

    Article  Google Scholar 

  • Revil, A., K. Titov, C. Doussan, and V. Lapenna, 2006. Applications of the self-potential method to hydrological problems: Chapter 9 in Vereecken, H. et al. (ed.) Applied Hydrogeophysics, Springer, 255–291.

    Google Scholar 

  • Reynolds, J.M., 1997. An Introduction to Applied and Environmental Geophysics, Wiley, Chichester, UK, 796 p.

    Google Scholar 

  • Röthlisberger, H. 1972. Seismic exploration in cold regions, I. CRREL Monograph, Hanover, NH.

    Google Scholar 

  • Sharma, P.V., 1997. Environmental and engineering geophysics, Cambridge University Press, Cambridge, MA, 475 p.

    Google Scholar 

  • Sharp, M.J., K. Richards, I. Willis, N. Arnold, and P. Nienow, 1993. Geometry, bed topography and drainage system structure of the Haut Glacier d’Arolla, Switzerland, Earth Surf. Proc. Land., 18 (6), 557–571.

    Article  Google Scholar 

  • Smith, A.M., 1997. Basal conditions on Rutford Ice Stream, West Antarctica, from seismic observations, J. Geophys. Res., 101 (C10), 22, 749–755.

    Google Scholar 

  • Smith, A.M., T. Murray, B.M. Davison, A.F. Clough, J. Woodward, and H. Jiskoot, 2002a. Late surge glacial conditions on Bakaninbreen, Svalbard, and implications for surge termination, J. Geophys. Res., 107 (B8), doi: 10.1029/2001JB000475.

    Google Scholar 

  • Smith, A.M., T. Murray, B.M. Davison, A.F. Clough, J. Woodward, and H. Jiskoot, 2002b. Late surge glacial conditions on Bakaninbreen, Svalbard, and implications for surge termination, J. Geophys. Res., 107 (B8), DOI: 10.1029/2001JB000475.

    Google Scholar 

  • Solomatin, V.I., 1986. Petrogenesis of subsurface ice. Novosibirsk, Nauka, 216p. (in Russian)

    Google Scholar 

  • Stähli, M., P.-E. Jansson, and L.-C. Lundin, 1996. Preferential water flow in a frozen soil—a two domain model approach, Hydrol. Process., 10, 1305–1316.

    Article  Google Scholar 

  • Sullivan, J.M., R. Ludwig Jr., and D.V. Repin, 2000. Permafrost and stratigraphic layer identification using a hierarchical neural network for interpretation of ground-penetrating radar, edited by S.A. Grant and I.K. Iskandar, Contaminant Hydrology: Cold regions modelling, Lewis, Florida, 246 pp.

    Google Scholar 

  • Telford, W.M., L.P. Geldart, and R.E. Sheriff, 1990. Applied Geophysics, 2nd ed., Cambridge University Press, Cambridge, MA, 770 p.

    Google Scholar 

  • Titov, K., V. Loukhmanov, and A. Potapov, 2000. Monitoring of water seepage from a reservoir using resistivity and self polarization methods: case history of the Petergoph fountain water supply system. First Break 18 (10), 431–435.

    Article  Google Scholar 

  • Tolstikhin, N.I., 1941. The water of frozen part of lithosphere. Gosgeolizdat, Moscow, 204 p. (in Russian)

    Google Scholar 

  • Vaughan, D.G., A.M. Smith,, P.C. Nath, and E.L. Meur, 2003. Acoustic impedance and basal shear stress beneath four Antarctic ice streams, Ann Glaciol., 36, 225–232.

    Google Scholar 

  • Walker G.G., and K. Kavasaki, 1988. Observation of double sign reversals in transient electromagnetic central induction soundings, Geoexploration, 25 (3), 245–254.

    Article  Google Scholar 

  • Washburn, A.L., 1979. Geocryology. A Survey of Periglacial Processes and Environments, Edward Arnold, London.

    Google Scholar 

  • White, M.D., and M. Oostrom, 2000. STOMP, Subsurface Transport Over Multiple Phases, version 2.0. Users guide U.S. Department of Energy and Pacific Northwest National Laboratory, Richland, Washington, 238 p.

    Google Scholar 

  • Woo, M.-K., and P. Marsh, 1990. Response of soil moisture change to hydrological processes in a continuous permafrost environment, Nordic Hydrol. 21, 235–252.

    Google Scholar 

  • Zadoroznaya, V.Yu., and V.P. Lepeshkin, 1998. IP process in multi-layered sections and interpretation of inductive soundings. Phys. Earth, 4, 55–61. (in Russian)

    Google Scholar 

  • Zhao, L., D.M. Gray, and B. Toth, 2002. Influence of soil texture on snowmelt infiltration into frozen soils, Can. J. Soil. Sci. 82, 75–83.

    Google Scholar 

  • Zimmerman, R.W., and M.S. King, 1986. The effect of the extent of freezing on seismic velocities in unconsnsolidated permafrost, Geophysics, 51 (6), 1285–1290.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

French, H.K., Binley, A., Kharkhordin, I., Kulessa, B., Krylov, S.S. (2006). COLD REGIONS HYDROGEOPHYSICS: PHYSICAL CHARACTERISATION AND MONITORING. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_7

Download citation

Publish with us

Policies and ethics