Skip to main content

Functional Molecular Units for Guiding Biomarker Panel Design

  • Protocol
  • First Online:
Biomedical Literature Mining

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1159))

Abstract

The field of biomarker research has experienced a major boost in recent years, and the number of publications on biomarker studies evaluating given, but also proposing novel biomarker candidates is increasing rapidly for numerous clinically relevant disease areas. However, individual markers often lack sensitivity and specificity in the clinical context, resting essentially on the intra-individual phenotype variability hampering sensitivity, or on assessing more general processes downstream of the causative molecular events characterizing a disease term, in consequence impairing disease specificity. The trend to circumvent these shortcomings goes towards utilizing multimarker panels, thus combining the strength of individual markers to further enhance performance regarding both sensitivity and specificity. A way of identifying the optimal composition of individual markers in a panel approach is to pick each marker as representative for a specific pathophysiological (mechanistic) process relevant for the disease under investigation, hence resulting in a multimarker panel for covering the set of pathophysiological processes underlying the frequently multifactorial composition of a clinical phenotype.

Here we outline a procedure of identifying such sets of disease-specific pathophysiological processes (units) delineated on the basis of disease-associated molecular feature lists derived from literature mining as well as aggregated, publicly available Omics profiling experiments. With such molecular units in hand, providing an improved reflection of a specific clinical phenotype, biomarker candidates can then be assigned to or novel candidates are to be selected from these units, subsequently resulting in a multimarker panel promising improved accuracy in disease diagnosis as well as prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ptolemy AS, Rifai N (2010) What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema. Scand J Clin Lab Invest Suppl 242:6–14. doi:10.3109/00365513.2010.493354

    Article  PubMed  Google Scholar 

  2. Ziegler A, Koch A, Krockenberger K, Grosshennig A (2012) Personalized medicine using DNA biomarkers: a review. Hum Genet 131:1627–1638. doi:10.1007/s00439-012-1188-9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Barrett T, Troup DB, Wilhite SE et al (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35:D760–D765. doi:10.1093/nar/gkl887

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Rustici G, Kolesnikov N, Brandizi M et al (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res 41:D987–D990. doi:10.1093/nar/gks1174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Mühlberger I, Wilflingseder J, Bernthaler A et al (2011) Computational analysis workflows for omics data interpretation. Methods Mol Biol 719:379–397. doi:10.1007/978-1-61779-027-0_17

    Article  PubMed  CAS  Google Scholar 

  6. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367. doi:10.1073/pnas.0903103106

    Article  PubMed Central  PubMed  Google Scholar 

  7. Li MJ, Wang P, Liu X et al (2012) GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res 40:D1047–D1054. doi:10.1093/nar/gkr1182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Coon JJ, Zürbig P, Dakna M et al (2008) CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl 2:964. doi:10.1002/prca.200800024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807. doi:10.1093/nar/gks1065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R (2012) Text-mining solutions for biomedical research: enabling integrative biology. Nat Rev Genet 13:829–839. doi:10.1038/nrg3337

    Article  PubMed  CAS  Google Scholar 

  11. Rebholz-Schuhmann D, Arregui M, Gaudan S et al (2008) Text processing through Web services: calling Whatizit. Bioinformatics 24:296–298. doi:10.1093/bioinformatics/btm557

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21 Suppl 2:ii252–ii258. doi: 10.1093/bioinformatics/bti1142

  13. UniProt-Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75. doi:10.1093/nar/gkr981

    Article  CAS  Google Scholar 

  14. Flicek P, Ahmed I, Amode MR et al (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55. doi:10.1093/nar/gks1236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Huang DW, Sherman BT, Stephens R et al (2008) DAVID gene ID conversion tool. Bioinformation 2:428–430

    Article  PubMed Central  Google Scholar 

  16. Cascione L, Ferro A, Giugno R et al (2013) Elucidating the role of microRNAs in cancer through data mining techniques. Adv Exp Med Biol 774:291–315. doi:10.1007/978-94-007-5590-1_15

    Article  PubMed  CAS  Google Scholar 

  17. Hsu S-D, Lin F-M, Wu W-Y et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169. doi:10.1093/nar/gkq1107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Orchard S (2012) Molecular interaction databases. Proteomics 12:1656–1662. doi:10.1002/pmic.201100484

    Article  PubMed  CAS  Google Scholar 

  19. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon—level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529. doi:10.1038/nmeth.1637

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. doi:10.1093/nar/gks1158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846. doi:10.1093/nar/gkr1088

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697. doi:10.1093/nar/gkq1018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Smoot ME, Ono K, Ruscheinski J et al (2010) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi:10.1093/bioinformatics/btq675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Lopes CT, Franz M, Kazi F et al (2010) Cytoscape web: an interactive web-based network browser. Bioinformatics 26:2347–2348. doi:10.1093/bioinformatics/btq430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Breitkreutz B-J, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4:R22

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hu Z, Hung J-H, Wang Y et al (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37:W115–W121. doi:10.1093/nar/gkp406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23:2651–2659. doi:10.1093/bioinformatics/btm401

    Article  PubMed  CAS  Google Scholar 

  29. Gehlenborg N, O’Donoghue SI, Baliga NS et al (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68. doi:10.1038/nmeth.1436

    Article  PubMed  CAS  Google Scholar 

  30. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1:27–64. doi:10.1016/j.cosrev.2007.05.001

    Article  Google Scholar 

  31. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  32. Van Dongen S (2000) Graph clustering by flow simulation. PhD thesis, University of Utrecht

    Google Scholar 

  33. Wang J, Li M, Deng Y, Pan Y (2010) Recent advances in clustering methods for protein interaction networks. BMC Genomics 11 Suppl 3:S10. doi: 10.1186/1471-2164-11-S3-S10

  34. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Kanehisa M (2013) Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 939:263–275. doi:10.1007/978-1-62703-107-3_17

    Article  PubMed  CAS  Google Scholar 

  36. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Biomarkers-Definitions-Working-Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. doi:10.1067/mcp.2001.113989

    Article  Google Scholar 

  38. Rainer J, Sanchez-Cabo F, Stocker G et al (2006) CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis. Nucleic Acids Res 34:W498–W503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  41. Huang DW, Sherman BT, Tan Q et al (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175. doi:10.1093/nar/gkm415

    Article  PubMed Central  Google Scholar 

  42. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res 39:D1035–D1041. doi:10.1093/nar/gkq1126

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Heinzel A, Fechete R, Mühlberger I et al (2013) Molecular models of the cardiorenal syndrome. Electrophoresis 34:NA. doi: 10.1002/elps.201370101

  44. Saito R, Smoot ME, Ono K et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076. doi:10.1038/nmeth.2212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Barsky A, Gardy JL, Hancock REW, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042. doi:10.1093/bioinformatics/btm057

    Article  PubMed  CAS  Google Scholar 

  46. Archacki SR, Angheloiu G, Tian X-L et al (2003) Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiol Genomics 15:65–74. doi:10.1152/physiolgenomics.00181.2002

    PubMed  CAS  Google Scholar 

  47. Cagnin S, Biscuola M, Patuzzo C et al (2009) Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genomics 10:13. doi:10.1186/1471-2164-10-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Volger OL, Fledderus JO, Kisters N et al (2007) Distinctive expression of chemokines and transforming growth factor-beta signaling in human arterial endothelium during atherosclerosis. Am J Pathol 171:326–337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Hägg S, Skogsberg J, Lundström J et al (2009) Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study. PLoS Genet 5:e1000754. doi:10.1371/journal.pgen.1000754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under the grant agreement no. 2782494 (EU-MASCARA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Perco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Heinzel, A., Mühlberger, I., Fechete, R., Mayer, B., Perco, P. (2014). Functional Molecular Units for Guiding Biomarker Panel Design. In: Kumar, V., Tipney, H. (eds) Biomedical Literature Mining. Methods in Molecular Biology, vol 1159. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0709-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0709-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0708-3

  • Online ISBN: 978-1-4939-0709-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics