Skip to main content

In Vitro Methods for Studying the Mechanisms of Resistance to DNA-Damaging Therapeutic Drugs

  • Protocol
  • First Online:
Cancer Drug Resistance

Abstract

Most commonly used anticancer drugs exert their effects mainly by causing DNA damage. The enhancement in DNA damage response (DDR) is considered a key mechanism that enables cancer cells to survive through eliminating the damaged DNA lesions and thereby developing resistance to DNA-damaging agents. This chapter describes the four experimental approaches for studying DDR and genotoxic drug resistance, including the use of γ-H2AX and comet assays to monitor DNA damage and repair capacity as well as the use of clonogenic and β-galactosidase staining assays to assess long-term cell fate after DNA-damaging treatment. Finally, we also present examples of these methods currently used in our laboratory for studying the role of FOXM1 in DNA damage-induced senescence and epirubicin resistance.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-3347-1_18

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-3347-1_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung-Ong K, Giaever G, Nislow C (2013) DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol 20:648–659

    Article  CAS  PubMed  Google Scholar 

  2. Podhorecka M, Skladanowski A, Bozko P (2010) H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids 2010

    Google Scholar 

  3. d'Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  PubMed  Google Scholar 

  4. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khongkow P, Karunarathna U, Khongkow M, Gong C, Gomes AR, Yague E, Monteiro LJ, Kongsema M, Zona S, Man EP, Tsang JW, Coombes RC, Wu KJ, Khoo US, Medema RH, Freire R, Lam EW (2014) FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene 33:4144–4155

    Article  CAS  PubMed  Google Scholar 

  6. Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, Koo CY, Gomes AR, Pinto PH, Varghese V, Kenny LM, Charles Coombes R, Freire R, Medema RH, Lam EWF (2013) The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene 32:4634–4645

    Article  CAS  PubMed  Google Scholar 

  7. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  8. Jucha A, Wegierek-Ciuk A, Koza Z, Lisowska H, Wojcik A, Wojewodzka M, Lankoff A (2010) FociCounter: a freely available PC programme for quantitative and qualitative analysis of gamma-H2AX foci. Mutat Res 696:16–20

    Article  CAS  PubMed  Google Scholar 

  9. Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, Friman O, Guertin D, Chang J, Lindquist R, Moffat J, Golland P, Sabatini D (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liao W, McNutt MA, Zhu W-G (2009) The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 48:46–53

    Article  CAS  PubMed  Google Scholar 

  11. Spanswick V, Hartley J, Hartley J (2010) Measurement of DNA interstrand crosslinking in individual cells using the single cell gel electrophoresis (Comet) assay. In: Fox KR (ed) Drug-DNA interaction protocols, vol 613, Methods in molecular biology. Humana Press, New York, NY, pp 267–282. doi:10.1007/978-1-60327-418-0_17

    Chapter  Google Scholar 

  12. Clingen P, Lowe J, Green ML (2000) Measurement of DNA damage and repair capacity as a function of age using the comet assay. In: Barnett Y, Barnett C (eds) Aging methods and protocols, vol 38, Methods in molecular medicine. Humana Press, New York, NY, pp 143–157. doi:10.1385/1-59259-070-5:143

    Chapter  Google Scholar 

  13. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2014) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  Google Scholar 

  14. Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. In: Bjergbæk L (ed) DNA repair protocols, vol 920, Methods in molecular biology. Humana Press, New York, NY, pp 613–626. doi:10.1007/978-1-61779-998-3_40

    Chapter  Google Scholar 

  15. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319

    Article  CAS  PubMed  Google Scholar 

  16. Munshi A, Hobbs M, Meyn R (2005) Clonogenic cell survival assay. In: Blumenthal R (ed) Chemosensitivity, vol 110, Methods in molecular medicine™. Humana Press, New York, NY, pp 21–28. doi:10.1385/1-59259-869-2:021

    Chapter  Google Scholar 

  17. Plumb J (2004) Cell sensitivity assays: clonogenic assay. In: Langdon S (ed) Cancer cell culture, vol 88, Methods in molecular medicine™. Humana Press, New York, NY, pp 159–164. doi:10.1385/1-59259-406-9:159

    Chapter  Google Scholar 

  18. Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11:S27–S31

    Article  CAS  PubMed  Google Scholar 

  19. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    CAS  PubMed  Google Scholar 

  20. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-[beta]gal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

    Article  CAS  PubMed  Google Scholar 

  22. Itahana K, Itahana Y, Dimri GP (2013) Colorimetric detection of senescence-associated beta galactosidase. Methods Mol Biol 965:143–15623

    Google Scholar 

  23. Burn SF (2012) Detection of β-galactosidase activity: X-gal staining. Methods Mol Biol 886:241–250

    Google Scholar 

  24. Sun HW, Feigal RJ, Messer HH (1990) Cytotoxicity of glutaraldehyde and formaldehyde in relation to time of exposure and concentration. Pediatr Dent 12:303–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W.-F. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Khongkow, P. et al. (2016). In Vitro Methods for Studying the Mechanisms of Resistance to DNA-Damaging Therapeutic Drugs. In: Rueff, J., Rodrigues, A. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 1395. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3347-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3347-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3345-7

  • Online ISBN: 978-1-4939-3347-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics