Skip to main content

Epigenetic Treatment Options in Urothelial Carcinoma

  • Protocol
  • First Online:
Urothelial Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1655))

Abstract

Mutations, dysregulation, and dysbalance of epigenetic regulators are especially frequent in urothelial carcinoma (UC) compared to other malignancies. Accordingly, targeting epigenetic regulators may provide a window of opportunity particularly in anticancer therapy of UC. In general, these epigenetic regulators comprise DNA methyltransferases and DNA demethylases (for DNA methylation), histone methyltransferases, and histone demethylases (for histone methylation) as well as acetyl transferases and histone deacetylases (for histone and non-histone acetylation).

As epigenetic regulators target a plethora of cellular functions and available inhibitors often inhibit enzymatic activity of more than one isoenzyme or may have further off-target effects, analysis of their functions in UC pathogenesis as well as of the antineoplastic capacity of according inhibitors should follow a multidimensional approach.

Here, we present our standard approach for the analysis of the cellular and molecular functions of individual HDAC enzymes, their suitability as treatment targets and for the evaluation of isoenzyme-specific HDAC inhibitors regarding their antineoplastic efficacy. This approach may also serve as prototype for the preclinical evaluation of other epigenetic treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. TCGA (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322. doi:10.1038/nature12965

    Article  Google Scholar 

  2. Niegisch G, Retz M, Thalgott M, Balabanov S, Honecker F, Ohlmann CH, Stockle M, Bogemann M, Vom Dorp F, Gschwend J, Hartmann A, Ohmann C, Albers P (2015) Second-line treatment of advanced urothelial cancer with paclitaxel and everolimus in a German phase II trial (AUO trial AB 35/09). Oncology 89:70–78. doi:10.1159/000376551

    Article  CAS  PubMed  Google Scholar 

  3. Krege S, Rexer H, vom Dorp F, de Geeter P, Klotz T, Retz M, Heidenreich A, Kuhn M, Kamradt J, Feyerabend S, Wulfing C, Zastrow S, Albers P, Hakenberg O, Roigas J, Fenner M, Heinzer H, Schrader M (2014) Prospective randomized double-blind multicentre phase II study comparing gemcitabine and cisplatin plus sorafenib chemotherapy with gemcitabine and cisplatin plus placebo in locally advanced and/or metastasized urothelial cancer: SUSE (AUO-AB 31/05). BJU Int 113(3):429–436. doi:10.1111/bju.12437

    Article  CAS  PubMed  Google Scholar 

  4. Gallagher DJ, Milowsky MI, Gerst SR, Ishill N, Riches J, Regazzi A, Boyle MG, Trout A, Flaherty AM, Bajorin DF (2010) Phase II study of sunitinib in patients with metastatic urothelial cancer. J Clin Oncol 28(8):1373–1379. doi:10.1200/JCO.2009.25.3922

    Article  CAS  PubMed  Google Scholar 

  5. Oudard S, Culine S, Vano Y, Goldwasser F, Theodore C, Nguyen T, Voog E, Banu E, Vieillefond A, Priou F, Deplanque G, Gravis G, Ravaud A, Vannetzel JM, Machiels JP, Muracciole X, Pichon MF, Bay JO, Elaidi R, Teghom C, Radvanyi F, Beuzeboc P (2015) Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur J Cancer 51(1):45–54. doi:10.1016/j.ejca.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  6. Miller K, Morant R, Stenzl A, Zuna I, Wirth M (2016) A phase II study of the central European society of anticancer-drug research (CESAR) group: results of an open-label study of gemcitabine plus cisplatin with or without concomitant or sequential gefitinib in patients with advanced or metastatic transitional cell carcinoma of the urothelium. Urol Int 96(1):5–13. doi:10.1159/000381589

    Article  CAS  PubMed  Google Scholar 

  7. Knievel J, Schulz WA, Greife A, Hader C, Lubke T, Schmitz I, Albers P, Niegisch G (2014) Multiple mechanisms mediate resistance to sorafenib in urothelial cancer. Int J Mol Sci 15(11):20500–20517. doi:10.3390/ijms151120500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nawroth R, Stellwagen F, Schulz WA, Stoehr R, Hartmann A, Krause BJ, Gschwend JE, Retz M (2011) S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One 6(11):e27509. doi:10.1371/journal.pone.0027509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo G, Sun X, Chen C, Wu S, Huang P, Li Z, Dean M, Huang Y, Jia W, Zhou Q, Tang A, Yang Z, Li X, Song P, Zhao X, Ye R, Zhang S, Lin Z, Qi M, Wan S, Xie L, Fan F, Nickerson ML, Zou X, Hu X, Xing L, Lv Z, Mei H, Gao S, Liang C, Gao Z, Lu J, Yu Y, Liu C, Li L, Fang X, Jiang Z, Yang J, Li C, Chen J, Zhang F, Lai Y, Zhou F, Chen H, Chan HC, Tsang S, Theodorescu D, Li Y, Zhang X, Wang J, Yang H, Gui Y, Cai Z (2013) Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 45(12):1459–1463. doi:10.1038/ng.2798

    Article  CAS  PubMed  Google Scholar 

  10. Schulz WA, Koutsogiannouli EA, Niegisch G, Hoffmann MJ (2015) Epigenetics of urothelial carcinoma. Methods Mol Biol 1238:183–215. doi:10.1007/978-1-4939-1804-1_10

    Article  PubMed  Google Scholar 

  11. Pinkerneil M, Hoffmann MJ, Kohlhof H, Schulz WA, Niegisch G (2016) Evaluation of the therapeutic potential of the novel isotype specific HDAC inhibitor 4SC-202 in urothelial carcinoma cell lines. Target Oncol 11(6):783–798. doi:10.1007/s11523-016-0444-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pinkerneil M, Hoffmann MJ, Deenen R, Kohrer K, Arent T, Schulz WA, Niegisch G (2016) Inhibition of class I histone deacetylases 1 and 2 promotes urothelial carcinoma cell death by various mechanisms. Mol Cancer Ther 15(2):299–312. doi:10.1158/1535-7163.MCT-15-0618

    Article  CAS  PubMed  Google Scholar 

  13. Niegisch G, Knievel J, Koch A, Hader C, Fischer U, Albers P, Schulz WA (2013) Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol 31(8):1770–1779. doi:10.1016/j.urolonc.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann M, Hoffmann MJ, Koch A, Ulrich SM, Schulz WA, Niegisch G (2014) Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment. J Exp Clin Cancer Res 33:59. doi:10.1186/s13046-014-0059-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosik L, Niegisch G, Fischer U, Jung M, Schulz WA, Hoffmann MJ (2014) Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer Biol Ther 15(6):742–757. doi:10.4161/cbt.28469

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pinkerneil M, Hoffmann MJ, Schulz WA, Niegisch G (2017) HDACs and HDAC inhibitors in urothelial carcinoma - perspectives for an antineoplastic treatment. Curr Med Chem:2017. Epub ahead of print

    Google Scholar 

  17. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9(1):45–57. doi:10.1016/S1097-2765(01)00429-4

    Article  CAS  PubMed  Google Scholar 

  18. Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfi A, Koch U, De Francesco R, Steinkuhler C, Gallinari P (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 104(44):17335–17340. doi:10.1073/pnas.0706487104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin M, Kettmann R, Dequiedt F (2007) Class IIa histone deacetylases: regulating the regulators. Oncogene 26(37):5450–5467. doi:10.1038/sj.onc.1210613

    Article  CAS  PubMed  Google Scholar 

  20. Valenzuela-Fernandez A, Cabrero JR, Serrador JM, Sanchez-Madrid F (2008) HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol 18(6):291–297. doi:10.1016/j.tcb.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031. doi:10.1016/j.cell.2009.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang PH, Zhang L, Zhang YJ, Zhang J, Xu WF (2013) HDAC6: physiological function and its selective inhibitors for cancer treatment. Drug Discov Ther 7(6):233–242. doi:10.5582/ddt.2013.v7.6.233

    Article  CAS  PubMed  Google Scholar 

  23. Oehme I, Linke JP, Bock BC, Milde T, Lodrini M, Hartenstein B, Wiegand I, Eckert C, Roth W, Kool M, Kaden S, Grone HJ, Schulte JH, Lindner S, Hamacher-Brady A, Brady NR, Deubzer HE, Witt O (2013) Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci U S A 110(28):E2592–E2601. doi:10.1073/pnas.1300113110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Sahakian E, Powers J, Lienlaf M, Perez-Villarroel P, Knox T, Villagra A (2016) Functional analysis of histone deacetylase 11 (HDAC11). Methods Mol Biol 1436:147–165. doi:10.1007/978-1-4939-3667-0_11

    Article  CAS  PubMed  Google Scholar 

  25. Deubzer HE, Schier MC, Oehme I, Lodrini M, Haendler B, Sommer A, Witt O (2013) HDAC11 is a novel drug target in carcinomas. Int J Cancer 132(9):2200–2208. doi:10.1002/ijc.27876

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6(10). doi:10.1101/cshperspect.a026831

  27. Ozawa A, Tanji N, Kikugawa T, Sasaki T, Yanagihara Y, Miura N, Yokoyama M (2010) Inhibition of bladder tumour growth by histone deacetylase inhibitor. BJU Int 105(8):1181–1186. doi:10.1111/j.1464-410X.2009.08795.x

    Article  CAS  PubMed  Google Scholar 

  28. Ozdag H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, Collins VP, Bowtell D, Kouzarides T, Brenton JD, Caldas C (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90. doi:10.1186/1471-2164-7-90

    Article  PubMed  PubMed Central  Google Scholar 

  29. Poyet C, Jentsch B, Hermanns T, Schweckendiek D, Seifert HH, Schmidtpeter M, Sulser T, Moch H, Wild PJ, Kristiansen G (2014) Expression of histone deacetylases 1, 2 and 3 in urothelial bladder cancer. BMC Clin Pathol 14(1):10. doi:10.1186/1472-6890-14-10

    Article  PubMed  PubMed Central  Google Scholar 

  30. Junqueira-Neto S, Vieira FQ, Montezuma D, Costa NR, Antunes L, Baptista T, Oliveira AI, Graca I, Rodrigues A, Magalhaes JS, Oliveira J, Henrique R, Jeronimo C (2015) Phenotypic impact of deregulated expression of class I histone deacetylases in urothelial cell carcinoma of the bladder. Mol Carcinog 54(7):523–531. doi:10.1002/mc.22117

    Article  CAS  PubMed  Google Scholar 

  31. Xu XS, Wang L, Abrams J, Wang G (2011) Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer. J Hematol Oncol 4:17. doi:10.1186/1756-8722-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moser MA, Hagelkruys A, Seiser C (2014) Transcription and beyond: the role of mammalian class I lysine deacetylases. Chromosoma 123(1–2):67–78. doi:10.1007/s00412-013-0441-x

    Article  CAS  PubMed  Google Scholar 

  33. Reichert N, Choukrallah MA, Matthias P (2012) Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 69(13):2173–2187. doi:10.1007/s00018-012-0921-9

    Article  CAS  PubMed  Google Scholar 

  34. Stengel KR, Hiebert SW (2015) Class I HDACs affect DNA replication, repair, and chromatin structure: implications for cancer therapy. Antioxid Redox Signal 23(1):51–65. doi:10.1089/ars.2014.5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kelly RD, Cowley SM (2013) The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans 41(3):741–749. doi:10.1042/BST20130010

    Article  CAS  PubMed  Google Scholar 

  36. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458. doi:10.1038/417455a

    Article  CAS  PubMed  Google Scholar 

  37. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S, Horinouchi S, Yoshida M (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21(24):6820–6831. doi:10.1093/emboj/cdf682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyault C, Sadoul K, Pabion M, Khochbin S (2007) HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26(37):5468–5476. doi:10.1038/sj.onc.1210614

    Article  CAS  PubMed  Google Scholar 

  39. Micelli C, Rastelli G (2015) Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today 20(6):718–735. doi:10.1016/j.drudis.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  40. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713. doi:10.1101/cshperspect.a018713

    Article  PubMed  PubMed Central  Google Scholar 

  41. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691. doi:10.1038/nrd4360

    Article  CAS  PubMed  Google Scholar 

  42. Gryder BE, Sodji QH, Oyelere AK (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4(4):505–524. doi:10.4155/fmc.12.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roche J, Bertrand P (2016) Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 121:451–483. doi:10.1016/j.ejmech.2016.05.047

    Article  CAS  PubMed  Google Scholar 

  44. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2(6):1445–1457. doi:10.1038/nprot.2007.202

    Article  CAS  PubMed  Google Scholar 

  45. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, Kopp-Schneider A, Westermann F, Ulrich SM, von Deimling A, Fischer M, Witt O (2009) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15(1):91–99. doi:10.1158/1078-0432.CCR-08-0684

    Article  CAS  PubMed  Google Scholar 

  46. Hoffmann MJ, Koutsogiannouli E, Skowron MA, Pinkerneil M, Niegisch G, Brandt A, Stepanow S, Rieder H, Schulz WA (2016) The new immortalized uroepithelial cell line HBLAK contains defined genetic aberrations typical of early stage urothelial tumors. Bladder Cancer 2(4):449–463. doi:10.3233/blc-160065

    Article  PubMed  PubMed Central  Google Scholar 

  47. Swiatkowski S, Seifert HH, Steinhoff C, Prior A, Thievessen I, Schliess F, Schulz WA (2003) Activities of MAP-kinase pathways in normal uroepithelial cells and urothelial carcinoma cell lines. Exp Cell Res 282(1):48–57. doi:10.1006/excr.2002.5647

    Article  CAS  PubMed  Google Scholar 

  48. Southgate J, Hutton KA, Thomas DF, Trejdosiewicz LK (1994) Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab Invest 71(4):583–594

    CAS  PubMed  Google Scholar 

  49. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Conflicts of Interest

The HDAC project including the PhD position for M.P. was supported by grants from the Deutsche Forschungsgemeinschaft (NI 1398/1–1), the Forschungskommission of the Medical Faculty of the Heinrich-Heine-University (42/2015) and the Brigitte-und-Dr.-Konstanze-Wegener-Stiftung (project number 11) to G. N.. Further, G. N. reports receiving a commercial research grant (provision of experimental compound 4SC-202, publication costs) from 4SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Niegisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pinkerneil, M., Hoffmann, M.J., Niegisch, G. (2018). Epigenetic Treatment Options in Urothelial Carcinoma. In: Schulz, W., Hoffmann, M., Niegisch, G. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 1655. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7234-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7234-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7233-3

  • Online ISBN: 978-1-4939-7234-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics