Skip to main content

The Medicago truncatula Genome: Genomic Data Availability

  • Protocol
  • First Online:
Functional Genomics in Medicago truncatula

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1822))

Abstract

Medicago truncatula emerged in 1990 as a model for legumes, comprising the third largest land plant family. Most legumes form symbiotic nitrogen-fixing root nodules with compatible soil bacteria and thus are important contributors to the global nitrogen cycle and sustainable agriculture. Legumes and legume products are important sources for human and animal protein as well as for edible and industrial oils. In the years since M. truncatula was chosen as a legume model, many genetic, genomic, and molecular resources have become available, including reference quality genome sequences for two widely used genotypes. Accessibility of genomic data is important for many different types of studies with M. truncatula as well as for research involving crop and forage legumes. In this chapter, we discuss strategies to obtain archived M. truncatula genomic data originally deposited into custom databases that are no longer maintained but are now accessible in general databases. We also review key current genomic databases that are specific to M. truncatula as well as those that contain M. truncatula data in addition to data from other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DG, Bianchi S, London F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Muel X, Tourneur J, Denarie J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  2. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  3. Cook DR (1999) Medicago truncatula - a model in the making! Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  4. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  5. Sagan M, Morandi D, Tarneghi E, Duc G (1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-mutagenesis. Plant Sci 111:63–71

    Article  CAS  Google Scholar 

  6. Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86

    Article  CAS  PubMed  Google Scholar 

  7. Limpens E, Bisseling T (2003) Signaling in symbiosis. Curr Opin Plant Biol 6:343–350

    Article  CAS  PubMed  Google Scholar 

  8. Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez A-M, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong D-H, Jing Y, Jocker A, Kenton SM, Kim D-J, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun J-H, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang B-B, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Denarie J, Dixon RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524 http://www.nature.com/nature/journal/v480/n7378/abs/nature10625.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KF, Schwartz DC, Town CD (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15(4):227–239. https://doi.org/10.1093/dnares/dsn008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  12. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang S-P, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  13. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo ACG, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SCM, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  14. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  15. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  16. Phytozome v9.1: Phaseolus vulgaris v1.0 phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris

  17. Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J (2017) Strategies for optimizing BioNano and dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics 18:578

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD (2001) The Medicago Genome Initiative: a model legume database. Nucleic Acids Res 29:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamblin A-FJ, Crow JA, Johnson JE, Silverstein KAT, Kunau TM, Kilian A, Benz D, Stromvik M, Endré G, VandenBosch KA, Cook DR, Young ND, Retzel EF (2003) MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucleic Acids Res 31:196–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cannon SB, Crow JA, Heuer ML, Wang X, Cannon EKS, Dwan C, Lamblin A-F, Vasdewani J, Mudge J, Cook A, Gish J, Cheung F, Kenton S, Kunau TM, Brown D, May GD, Kim D, Cook DR, Roe BA, Town CD, Young ND, Retzel EF (2005) Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiol 138(1):38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Covitz PA, Smith LS, Long SR (1998) Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol 117:1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gyorgyey J, Vaubert D, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant Microbe Interact 13:62–71

    Article  CAS  PubMed  Google Scholar 

  23. Journet E-P, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer M-J, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucl Acids Res 30(24):5579–5592

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nam YW, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646

    Article  CAS  Google Scholar 

  25. Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  CAS  PubMed  Google Scholar 

  26. Choi H-K, Kim D, Uhm T, Limpens E, Lim H, Kalo P, Penmetsa VR, Seres A, Kulikova O, Bisseling T, Kiss G, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics 166:1463–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Article  CAS  PubMed Central  Google Scholar 

  28. Frugoli J, Harris J (2001) Medicago truncatula on the move! Plant Cell 13(3):458–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130(2):519–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137(4):1174–1181. https://doi.org/10.1104/pp.104.057034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kulikova O, Geurts R, Lamine M, Kim D-J, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283

    Article  CAS  PubMed  Google Scholar 

  32. Town CD (2006) Annotating the genome of Medicago truncatula. Curr Opin Plant Biol 9(2):122–127

    Article  CAS  PubMed  Google Scholar 

  33. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  34. Urbanczyk-Wochniak E, Sumner LW (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23:1418–1423

    Article  CAS  PubMed  Google Scholar 

  35. Karp PD (2002) The MetaCyc database. Nucleic Acids Res 30:59–61. https://doi.org/10.1093/nar/30.1.59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Karp PD, Paley S, Romero P (2002) The pathway tools software. Bioinformatics 18:S225–S232. https://doi.org/10.1093/bioinformatics/18.suppl_1.S225

    Article  PubMed  Google Scholar 

  37. Pontius JU, Wagner L, Schuler GD (2003) UniGene: a unified view of the transcriptome. NCBI Handbook 1:1–12

    Google Scholar 

  38. Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KAT, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140(1):221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  CAS  PubMed  Google Scholar 

  41. Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact 17(10):1063–1077. https://doi.org/10.1094/mpmi.2004.17.10.1063

    Article  PubMed  CAS  Google Scholar 

  42. El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proceedings of the National Academy of Sciences, USA. 0402186101

    Google Scholar 

  44. Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci U S A 101:16636–16641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tesfaye M, Silverstein KAT, Bucciarelli B, Samac DA, Vance CP (2006) The Affymetrix Medicago GeneChip® array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct Plant Biol 33:783–788

    Article  CAS  PubMed  Google Scholar 

  46. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513

    Article  CAS  PubMed  Google Scholar 

  47. He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y, Udvardi MK (2009) The Medicago truncatula gene expression atlas web server. BMC Bioinformatics 10:441. https://doi.org/10.1186/1471–2105–1110-1441

    Article  PubMed  PubMed Central  Google Scholar 

  48. Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK (2010) Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152:1716–1730

    Article  CAS  PubMed  Google Scholar 

  49. Wang M, Verdier J, Benedito VA, Tang Y, Murray JD, Ge Y, Becker JD, Carvalho H, Rogers C, Udvardi M (2013) LegumeGRN: a gene regulatory network prediction server for functional and comparative studies. PLoS One 8:e67434. https://doi.org/10.61371/journal.pone.0067434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Krishnakumar V, Kim M, Rosen BD, Karamycheva S, Bidwell SL, Tang H, Town CD (2015) MTGD: The Medicago truncatula genome database. Plant Cell Physiol 56(1):e1. https://doi.org/10.1093/pcp/pcu1179

    Article  PubMed  Google Scholar 

  51. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    Article  CAS  PubMed  Google Scholar 

  52. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M, Lyne R, Kalderimis A, Rutherford K, Stepan R, Sullivan J, Wakeling M, Watkins X, Micklem G (2012) InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. Bioinformatics 28:3163–3165. https://doi.org/10.1093/bioinformatics/bts577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, Done J, Grove C, Howe K, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Ozersky P, Paulini M, Raciti D, Schindelman G, Tuli MA, Auken KV, Wang D, Wang X, Williams G, Wong JD, Yook K, Schedl T, Hodgkin J, Berriman M, Kersey P, Spieth J, Stein L, Sternberg PW (2014) WormBase 2014: new views of curated biology. Nucleic Acids Res 42:42. https://doi.org/10.1093/nar/gkt1063

    Article  CAS  Google Scholar 

  56. Krishnakumar V, Contrino S, Cheng CY, Belyaeva I, Ferlanti ES, Miller JR, Vaughn MW, Micklem G, Town CD, Chan AP (2017) Thalemine: a warehouse for Arabidopsis data integration and discovery. Plant Cell Physiol 58:e4. https://doi.org/10.1093/pcp/pcw200

    Article  PubMed  CAS  Google Scholar 

  57. Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  58. Zhou P, Silverstein KAT, Ramaraj T, Guhlin J, Denny R, Liu J, Farmer AD, Steele KP, Stupar RM, Miller JR, Tiffin P, Mudge J, Young ND (2017) Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. BMC Genomics 18:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Curtin SJ, Tiffin P, Guhlin J, Trujillo DI, Burghardt LT, Atkins P, Baltes NJ, Denny R, Voytas DF, Stupar RM, Young ND (2017) Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiol 173:921–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 108:E864–E870

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One 8:e65688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roux B, Rodde N, Jardinaud M-F, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77:817–837

    Article  CAS  PubMed  Google Scholar 

  63. Gonzales MD, Archuleta E, Farmer A, Gajendran K, Grant D, Shoemaker R, Beavis WD, Waugh ME (2005) The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucl Acids Res 33(Suppl 1):D660–D665

    PubMed  CAS  Google Scholar 

  64. Dash S, Campbell JD, Cannon EKS, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res 44:D1181–D1188

    Article  CAS  PubMed  Google Scholar 

  65. Li J, Dai X, Liu T, Zhao PX (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res 40:D1221–D1229

    Article  CAS  PubMed  Google Scholar 

  66. Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D'Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44:D1133–D1140. https://doi.org/10.1093/nar/gkv1179

    Article  PubMed  CAS  Google Scholar 

  67. Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM (2016) Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580. https://doi.org/10.1093/nar/gkv1209

    Article  PubMed  CAS  Google Scholar 

  68. Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, Wang L (2014) CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30:1006–1007

    Article  CAS  PubMed  Google Scholar 

  69. Stein L (2010) Generic feature format, version 3. Sequence Ontology Project, pp 1–18

    Google Scholar 

  70. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  PubMed  CAS  Google Scholar 

  71. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578. https://doi.org/10.1038/nprot.2012.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart--biological queries made easy. BMC Genomics 10:22. https://doi.org/10.1186/1471-2164-10-22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Spooner W, Youens-Clark K, Staines D, Ware D (2012) GrameneMart: the BioMart data portal for the Gramene project. Database 2012:bar056. https://doi.org/10.1093/database/bar056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178. https://doi.org/10.1093/nar/gkr944

    Article  PubMed  CAS  Google Scholar 

  75. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29. https://doi.org/10.1093/nar/27.1.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kanehisa M (2016) Kegg bioinformatics resource for plant genomics and metabolomics. Methods Mol Biol 1374:55–70. https://doi.org/10.1007/978-1-4939-3167-5_3

    Article  PubMed  CAS  Google Scholar 

  77. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29:1830–1831. https://doi.org/10.1093/bioinformatics/btt285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  80. Naithani S, Preece J, D'Eustachio P, Gupta P, Amarasinghe V, Dharmawardhana PD, Wu G, Fabregat A, Elser JL, Weiser J, Keays M, Fuentes AMP, Petryszak R, Stein LD, Ware D, Jaiswal P (2017) Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 45:D1029–D1039. https://doi.org/10.1093/nar/gkw932

    Article  PubMed  CAS  Google Scholar 

  81. Guo Y, Zhao S, Bjoring M, Han L (2015) Advanced datamining using RNAseq data. Big Data Analytics in Bioinformatics and Healthcare. https://doi.org/10.4018/978-1-4666-6611-5.ch001

  82. Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194. https://doi.org/10.1093/nar/gkr938

    Article  PubMed  CAS  Google Scholar 

  83. Edgar R (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kapushesky M, Emam I, Holloway E, Kurnosov P, Zorin A, Malone J, Rustici G, Williams E, Parkinson H, Brazma A (2009) Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res 38:D690–D698. https://doi.org/10.1093/nar/gkp936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Nakano M (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:D731–D735. https://doi.org/10.1093/nar/gkj077

    Article  PubMed  CAS  Google Scholar 

  86. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:D19. https://doi.org/10.1093/nar/gkq1019

    Article  PubMed  CAS  Google Scholar 

  87. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, Farne A, Lara GG, Holloway E, Kapushesky M, Lilja P, Mukherjee G, Oezcimen a RT, Rocca-Serra P, Sharma A, Sansone S, Brazma A (2005) ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555. https://doi.org/10.1093/nar/gki056

    Article  PubMed  CAS  Google Scholar 

  88. Li L, Ji G, Ye C, Shu C, Zhang J, Liang C (2015) PlantOrDB: a genome-wide ortholog database for land plants and green algae. BMC Plant Biol 15:161. https://doi.org/10.1186/s12870-015-0531-4

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W (2015) PTGBase: an integrated database to study tandem duplicated genes in plants. Database 2015:bav017. https://doi.org/10.1093/database/bav017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2013) P3DB 3.0: From plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206–D1213. https://doi.org/10.1093/nar/gkt1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Consiglio A, Grillo G, Licciulli F, Ceci LR, Liuni S, Losito N, Volpicella M, Gallerani R, De Leo F (2011) PlantPIs – an interactive web resource on plant protease inhibitors. Curr Protein Pept Sci 12:448–454. https://doi.org/10.2174/138920311796391052

    Article  PubMed  CAS  Google Scholar 

  92. Brown JWS, Echeverria M, Qu LH, Lowe TM, Bachellerie JP, Hüttenhofer A, Kastenmayer JP, Green PJ, Shaw P, Marshall DF (2003) Plant snoRNA database. Nucleic Acids Res 31:432. https://doi.org/10.1093/nar/gkg009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045. https://doi.org/10.1093/nar/gkw982

    Article  PubMed  CAS  Google Scholar 

  94. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114. https://doi.org/10.1093/nar/gkg041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shahmuradov I, Abdulazimova A, Khan FZ, Solovyev V, Mustafayev N, Akbarova Y, Qamar R, Aliyev J (2012) The PlantProm DB: recent updates. Proceedings - 2012 International Conference on Biomedical Engineering and Biotechnology, iCBEB 2012. https://doi.org/10.1109/iCBEB.2012.433

  96. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the US National Science Foundation, grants IOS-1127155, and IOS-1733470 to RD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Dickstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Burks, D., Azad, R., Wen, J., Dickstein, R. (2018). The Medicago truncatula Genome: Genomic Data Availability. In: Cañas, L., Beltrán, J. (eds) Functional Genomics in Medicago truncatula. Methods in Molecular Biology, vol 1822. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8633-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8633-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8632-3

  • Online ISBN: 978-1-4939-8633-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics