Skip to main content

An Overview of Deep Learning Methods Used in Vibration-Based Damage Detection in Civil Engineering

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

This paper presents a brief overview of vibration-based damage identification studies based on Deep Learning (DL) in civil engineering structures. The presence, type, size, and propagation of structural damage on civil infrastructure have always been a topic of research. In the last couple of decades, there has been a significant shift in the damage detection paradigm when the advancements in sensing and computing technologies met with the ever-expanding use of artificial neural network algorithms. Machine-Learning (ML) tools enabled researchers to implement more feasible and faster tools in damage detection applications. When an artificial neural network has more than three layers, it is typically considered as a “deep” learning network. Being an important accomplishment of the ML era, DL tools enable complex systems which are made of several layers to learn implementations of data with outstanding categorization and compartmentalization capability. In fact, with proper training, a DL tool can operate directly with the unprocessed raw data and help the algorithm produce output data. Competitive capabilities like this led DL algorithms perform very well in complicated problems by dividing a relatively large problem into much smaller and more manageable portions. Specifically for damage identification and localization on civil infrastructure, Convolutional Neural Networks (CNNs) and Unsupervised Pretrained Networks (UPNs) are the known DL tools published in the literature. This paper presents an overview of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwivedi, S.K., Vishwakarma, M., Soni, P.A.: Advances and researches on non destructive testing: a review. Mater. Today Proc. 5(2), 3690–3698 (2018). https://doi.org/10.1016/j.matpr.2017.11.620

    Article  Google Scholar 

  2. Wu, X., Ghaboussi, J., Garrett, J.H.: Use of neural networks in detection of structural damage. Comput. Struct. (1992). https://doi.org/10.1016/0045-7949(92)90132-J

  3. Frangopol, D.M., Liu, M.: Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost. Struct. Infrastruct. Eng. (2007). https://doi.org/10.1080/15732470500253164

  4. Ngoan, D.T., Mustafa, G., Osama, A., Onur, A.: Stadium vibration assessment for serviceability considering the vibration duration. In: Proceedings, Annu. Conf. - Can. Soc. Civ. Eng. (2017)

    Google Scholar 

  5. Celik, O., Catbas, F.N., Do, N.T., Gul, M., Abdeljaber, O., Younis, A., Avci, O.: Issues, codes and basic studies for stadium dynamics. In: Proc. Second Int. Conf. Infrastruct. Manag. Assess. Rehabil. Tech., Sharjah, UAE (2016)

    Google Scholar 

  6. Abdeljaber, O., Hussein, M.F.M., Avci, O.: In-service video-vibration monitoring for identification of walking patterns in an office floor. In: 25th Int. Congr. Sound Vib. Hiroshima, Japan (2018)

    Google Scholar 

  7. Chaabane, M., Ben Hamida, A., Mansouri, M., Nounou, H.N., Avci, O.: Damage detection using enhanced multivariate statistical process control technique. In: 2016 17th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2016 - Proc (2017). https://doi.org/10.1109/STA.2016.7952052

    Chapter  Google Scholar 

  8. Abdeljaber, O., Hussein, M., Avci, O., Davis, B., Reynolds, P.: A novel video-vibration monitoring system for walking pattern identification on floors. Adv. Eng. Softw. (2020). https://doi.org/10.1016/j.advengsoft.2019.102710

  9. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: A comparative assessment of nonlinear state estimation methods for structural health monitoring. Conf. Proc. Soc. Exp. Mech. Ser. (2015). https://doi.org/10.1007/978-3-319-15224-0_5

  10. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated square root unscented Kalman filter for state estimation - CSTR model. In: 12th Int. Multi-Conference Syst. Signals Devices, SSD 2015 (2015). https://doi.org/10.1109/SSD.2015.7348243

    Chapter  Google Scholar 

  11. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civ. Struct. Health Monit. 5 (2015). https://doi.org/10.1007/s13349-015-0134-7

  12. Avci, O.: Effects of Bottom Chord Extensions on the Static and Dynamic Performance of Steel Joist Supported Floors. Virginia Polytechnic Institute and State University, Virginia (2005)

    Google Scholar 

  13. Avci, O., Davis, B.: A Study on Effective Mass of One Way Joist Supported Systems Struct. Congr. 2015 – Proc. (2015). https://doi.org/10.1061/9780784479117.073

    Book  Google Scholar 

  14. Avci, O.: Retrofitting Steel Joist Supported Footbridges for Improved Vibration Response Struct. Congr. 2012 - Proc. (2012). https://doi.org/10.1061/9780784412367.041

    Book  Google Scholar 

  15. Avci, O., Bhargava, A., Nikitas, N., Inman, D.J.: Vibration annoyance assessment of train induced excitations from tunnels embedded in rock. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.134528

  16. Avci, O., Setareh, M., Murray, T.M.: Vibration Testing of Joist Supported Footbridges Struct. Congr. 2010 (2010). https://doi.org/10.1061/41130(369)80

    Book  Google Scholar 

  17. Avci, O., Bhargava, A., Nikitas, N., Inman, D.J.: Vibrations Assessment of Existing Building Foundations Due to Moving Trains in Underground Tunnels Conf. Proc. Soc. Exp. Mech. Ser. (2021). https://doi.org/10.1007/978-3-030-47634-2_8

    Book  Google Scholar 

  18. Morgenthal, G., Hallermann, N.: Quality assessment of Unmanned Aerial Vehicle (UAV) based visual inspection of structures. Adv. Struct. Eng. (2014). https://doi.org/10.1260/1369-4332.17.3.289

  19. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature. (2015). https://doi.org/10.1038/nature14541

  20. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Cluster Comput. (2017). https://doi.org/10.1007/s10586-017-1117-8

  21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science. 313 (2006). https://doi.org/10.1126/science.1127647

  22. Patterson, J., Gibson, A.: Deep Learning: A Practitioner’s Approach. O’Reilly Media, Newton, MA (2017). https://doi.org/10.1038/nature14539

    Book  Google Scholar 

  23. Fallahian, M., Khoshnoudian, F., Meruane, V.: Ensemble classification method for structural damage assessment under varying temperature. Struct. Health Monit. (2017). https://doi.org/10.1177/1475921717717311

  24. Fallahian, M., Khoshnoudian, F., Talaei, S., Meruane, V., Shadan, F.: Experimental validation of a deep neural network—sparse representation classification ensemble method. Struct. Des. Tall Spec. Build. (2018). https://doi.org/10.1002/tal.1504

  25. Shadan, F., Khoshnoudian, F., Esfandiari, A.: A frequency response-based structural damage identification using model updating method. Struct. Control Health Monit. (2016). https://doi.org/10.1002/stc.1768

  26. Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W., Ni, P.: Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. (2018). https://doi.org/10.1016/j.engstruct.2018.05.109

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 1097–1105 (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  28. Kiranyaz, S., Waris, M.A., Ahmad, I., Hamila, R., Gabbouj, M.: Face segmentation in thumbnail images by data-adaptive convolutional segmentation networks. In: 2016 IEEE Int. Conf. Image Process., pp. 2306–2310 (2016). https://doi.org/10.1109/ICIP.2016.7532770

    Chapter  Google Scholar 

  29. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

  30. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2020.107077

  31. O. Avci, O. Abdeljaber, S. Kiranyaz, S. Sassi, A. Ibrahim, M. Gabbouj, One Dimensional Convolutional Neural Networks for Real-Time Damage Detection of Rotating Machinery, Conf. Proc. Soc. Exp. Mech. Ser., 2021

    Google Scholar 

  32. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Convolutional Neural Networks for Real-Time and Wireless Damage Detection, Conf. Proc. Soc. Exp. Mech. Ser. (2020). https://doi.org/10.1007/978-3-030-12115-0_17

    Book  Google Scholar 

  33. O. Avci, O. Abdeljaber, S. Kiranyaz, Structural Damage Detection in Civil Engineering with Machine-Learning: Current State of the Art, Conf. Proc. Soc. Exp. Mech. Ser., 2021

    Google Scholar 

  34. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22, 3207–3220 (2010). https://doi.org/10.1162/NECO_a_00052

    Article  Google Scholar 

  35. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Proc. 20th Int. Conf. Artif. Neural Networks Part III, pp. 92–101. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  36. Kiranyaz, S., Ince, T., Gabbouj, M.: Personalized monitoring and advance warning system for cardiac arrhythmias. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-09544-z

  37. Kiranyaz, S., Ince, T., Hamila, R., Gabbouj, M.: Convolutional neural networks for patient-specific ECG classification. In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2015). https://doi.org/10.1109/EMBC.2015.7318926

    Chapter  Google Scholar 

  38. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63, 664–675 (2016). https://doi.org/10.1109/TBME.2015.2468589

    Article  Google Scholar 

  39. Kiranyaz, S., Ince, T., Abdeljaber, O., Avci, O., Gabbouj, M.: 1-D convolutional neural networks for signal processing applications. In: ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc. (2019). https://doi.org/10.1109/ICASSP.2019.8682194

    Chapter  Google Scholar 

  40. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017). https://doi.org/10.1016/j.jsv.2016.10.043

    Article  Google Scholar 

  41. Yu, Y., Wang, C., Gu, X., Li, J.: A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. 18, 143–163 (2019). https://doi.org/10.1177/1475921718804132

    Article  Google Scholar 

  42. Wu, Y.M., Samali, B.: Shake table testing of a base isolated model. Eng. Struct. (2002). https://doi.org/10.1016/S0141-0296(02)00054-8

  43. Khodabandehlou, H., Pekcan, G., Fadali, M.S.: Vibration-based structural condition assessment using convolution neural networks. Struct. Control Health Monit. (2018). https://doi.org/10.1002/stc.2308

  44. Cofre-Martel, S., Kobrich, P., Lopez Droguett, E., Meruane, V.: Deep convolutional neural network-based structural damage localization and quantification using transmissibility data. Shock Vib. (2019). https://doi.org/10.1155/2019/9859281

  45. Cofré, S., Kobrich, P., López Droguett, E., Meruane, V.: Transmissibility based structural assessment using deep convolutional neural network. In: Proc. ISMA 2018 - Int. Conf. Noise Vib. Eng. USD 2018 - Int. Conf. Uncertain. Struct. Dyn. (2018)

    Google Scholar 

  46. Kiranyaz, S., Gastli, A., Ben-Brahim, L., Alemadi, N., Gabbouj, M.: Real-time fault detection and identification for MMC using 1D convolutional neural networks. IEEE Trans. Ind. Electron. (2018). https://doi.org/10.1109/TIE.2018.2833045

  47. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. (2016). https://doi.org/10.1109/TIE.2016.2582729

  48. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Structural damage detection in real time: implementation of 1D convolutional neural networks for SHM applications. In: Niezrecki, C. (ed.) Struct. Heal. Monit. Damage Detect Proc. 35th IMAC, A Conf. Expo. Struct. Dyn. 2017, vol. 7, pp. 49–54. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-54109-9_6

    Chapter  Google Scholar 

  49. Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H., Inman, D.J.: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data. Neurocomputing. (2017). https://doi.org/10.1016/j.neucom.2017.09.069

  50. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Inman, D.J.: Wireless and real-time structural damage detection: a novel decentralized method for wireless sensor networks. J. Sound Vib. (2018)

    Google Scholar 

  51. Avci, O., Abdeljaber, O., Kiranyaz, S., Boashash, B., Sodano, H., Inman, D.J.: Efficiency validation of one dimensional convolutional neural networks for structural damage detection using a SHM benchmark data. In: 25th Int. Congr. Sound Vib. (2018)

    Google Scholar 

  52. Eren, L.: Bearing fault detection by one-dimensional convolutional neural networks. Math. Probl. Eng. (2017). https://doi.org/10.1155/2017/8617315

  53. Abdeljaber, O., Sassi, S., Avci, O., Kiranyaz, S., Abulrahman, I., Gabbouj, M.: Fault detection and severity identification of ball bearings by online condition monitoring. IEEE Trans. Ind. Electron. (2018) https://ieeexplore.ieee.org/document/8584489

  54. Li, D., Zhang, J., Zhang, Q., Wei, X.: Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th Int. Conf. e-Health Networking, Appl. Serv. Heal. 2017 (2017). https://doi.org/10.1109/HealthCom.2017.8210784

    Chapter  Google Scholar 

  55. Xiong, Z., Stiles, M., Zhao, J.: Robust ECG signal classification for the detection of atrial fibrillation using novel neural networks. In: 2017 Comput. Cardiol. Conf. (2018). https://doi.org/10.22489/cinc.2017.066-138

    Chapter  Google Scholar 

  56. Avci, O., Kiranyaz, S., Abdeljaber, O.: StructuralDamageDetection.com (Public Website). http://www.structuraldamagedetection.com/ (2019)

  57. O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, D.J. Inman, A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure, Conf. Proc. Soc. Exp. Mech. Ser., 2021

    Google Scholar 

  58. Abdeljaber, O., Younis, A., Avci, O., Catbas, N., Gul, M., Celik, O., Zhang, H.: Dynamic testing of a laboratory stadium structure. Geotech. Struct. Eng. Congr. 2016, 1719–1728 (2016). https://doi.org/10.1061/9780784479742.147

    Article  Google Scholar 

  59. Dyke, S., Bernal, D., Beck, J., Ventura, C.: Experimental phase II of the structural health monitoring benchmark problem. In: Proc. 16th ASCE Eng. Mech. Conf., pp. 1–7 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Avci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avci, O., Abdeljaber, O., Kiranyaz, S. (2022). An Overview of Deep Learning Methods Used in Vibration-Based Damage Detection in Civil Engineering. In: Grimmelsman, K. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-77143-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77143-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77142-3

  • Online ISBN: 978-3-030-77143-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics