Skip to main content

Functional Implications of Cardiac Mitochondria Clustering

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

The spatio-temporal organization of mitochondria in cardiac myocytes facilitates myocyte-wide, cluster-bound, mitochondrial inner membrane potential oscillatory depolarizations, commonly triggered by metabolic or oxidative stressors. Local intermitochondrial coupling can be mediated by reactive oxygen species (ROS) that activate inner membrane pores to initiate a ROS-induced-ROS-release process that produces synchronized limit cycle oscillations of mitochondrial clusters within the whole mitochondrial network. The network’s dynamic organization, structure and function can be assessed by quantifying dynamic local coupling constants and dynamic functional clustering coefficients, both providing information about the network’s response to external stimuli. In addition to its special organization, the mitochondrial network of cardiac myocytes exhibits substrate-sensitive coupling constants and clustering coefficients. The myocyte’s ability to form functional clusters of synchronously oscillating mitochondria is sensitive to conditions such as substrate availability (e.g., glucose, pyruvate, β-hydroxybutyrate), antioxidant status, respiratory chain activity, or history of oxidative challenge (e.g., ischemia-reperfusion). This underscores the relevance of quantitative methods to characterize the network’s functional status as a way to assess the myocyte’s resilience to pathological stressors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Page E, McCallister LP. Quantitative electron microscopic description of heart muscle cells; application to normal, hypertrophied and thyroxin-stimulated hearts. Am J Cardiol. 1973;31:172–81.

    Article  CAS  PubMed  Google Scholar 

  2. Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol. 2012;303:H940–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrari R, Censi S, Mastrorilli F, Boraso A. Prognostic benefits of heart rate reduction in cardiovascular disease. Eur Hear J Suppl. 2003;5:G10–4.

    Article  Google Scholar 

  4. Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res. 2010;88:30–9.

    Article  CAS  PubMed  Google Scholar 

  5. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. New York: Garland Science; 1995.

    Google Scholar 

  6. Aon MA, Cortassa S, O’Rourke B. Mitochondrial oscillations in physiology and pathophysiology. Adv Exp Med Biol. 2008;641:98–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aon MA, Cortassa S, Akar FG, O’Rourke B. Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta. 2006;1762(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  8. Aon MA, Cortassa S, O’Rourke B. The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J. 2006;91(11):4317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurz FT, Aon MA, O’Rourke B, Armoundas AA. Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc Natl Acad Sci U S A. 2010;107(32):14315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berns MW, Siemens AE, Walter RJ. Mitochondrial fluorescence patterns in rhodamine 6G-stained myocardial cells in vitro: analysis by real-time computer video microscopy and laser microspot excitation. Cell Biophys. 1984;6(4):263–77.

    Article  CAS  PubMed  Google Scholar 

  11. O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JVJr. Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Biophys J. 2003;85(5):3350–7.

    Google Scholar 

  12. Loew LM, Tuft RA, Carrington W, Fay FS. Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J. 1993;65(6):2396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huser J, Rechenmacher CE, Blatter LA. Imaging the permeability pore transition in single mitochondria. Biophys J. 1998;74(4):2129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Rourke B, Ramza B, Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science. 80-1994;265:962–6.

    Article  PubMed  Google Scholar 

  15. Romashko DN, Marban E, O’Rourke B. Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci U S A. 1998;95(4):1618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aon MA, Cortassa S, Marban E, O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem. 2003;278(45):44735–44.

    Article  CAS  PubMed  Google Scholar 

  17. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollot SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zorov DB, Juhaszova M, Sollot SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006;1757:509–17.

    Article  CAS  PubMed  Google Scholar 

  19. Picard M. Mitochondrial synapses: intracellular communication and signal integration. Trends Neurosci. 2015;38:468–74.

    Article  CAS  PubMed  Google Scholar 

  20. Aon MA, Cortassa S, O’Rourke B. Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A. 2004;101(13):4447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cortassa S, Aon MA, Winslow RL, O’Rourke B. A mitochondrial oscillator dependent on reactive oxygen species. Biophys J. 2004;87(3):2060–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kembro JM, Cortassa S, Aon MA. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol. 2014;5:257.

    Article  PubMed  PubMed Central  Google Scholar 

  23. O’Rourke B. Pathophysiological and protective roles of mitochondrial ion channels. J Physiol. 2000;529(1):23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aon MA, Cortassa S, Akar FG, Brown DA, Zhou L, O’Rourke B. From mitochondrial dynamics to arrhythmias. Int J Biochem Cell Biol. 2009;41(10):1940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuznetsov AV, Usson Y, Leverve X, Margreiter R. Subcellular heterogeneity of mitochondrial function and dysfunction: evidence obtained by confocal imaging. Mol Cell Biochem. 2004;256–257(1–2):359–65.

    Article  PubMed  Google Scholar 

  26. Manneschi L, Federico A. Polarographic analyses of subsarcolemmal and intermyofibrillar mitochondria from rat skeletal and cardiac muscle. J Neurol Sci. 1995;128(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  27. Croston TL, Thapa D, Holden AA, Tveter KJ, Lewis SE, Shepherd DL, et al. Functional deficiencies of subsarcolemmal mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol. 2014;307(1):H54–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dabkowski ER, Williamson CL, Bukowski VC, Chapman RS, Leonard SS, Peer CJ, et al. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol. 2009;296(2):H359–69.

    Article  CAS  PubMed  Google Scholar 

  29. Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart. Circ Res. 2016;118(10):1593–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuznetsov AV, Mayboroda O, Kunz D, Winkler K, Schubert W, Kunz WS. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers. J Cell Biol. 1998;140(5):1091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL. Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Phys. 1997;273(3 Pt 2):H1544–54.

    CAS  Google Scholar 

  32. Philippi M, Sillau AH. Oxidative capacity distribution in skeletal muscle fibers of the rat. J Exp Biol. 1994;189:1–11.

    CAS  PubMed  Google Scholar 

  33. O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiology. 2005;20:303–15.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Akar FG, Aon MA, Tomaselli GF, O’Rourke B. The mitochondrial origin of postischemic arrhythmias. J Clin Invest. 2005;115(12):3527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurz FT, Derungs T, Aon MA, O’Rourke B, Armoundas AA. Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior. Biophys J. 2015;108(8):1922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anesti V, Scorrano L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta. 2006;1757:692–9.

    Article  CAS  PubMed  Google Scholar 

  37. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004;64:985–93.

    Article  CAS  PubMed  Google Scholar 

  38. Yi M, Weaver D, Hajnoczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol. 2004;167:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Breckwoldt MO, Pfister FMJ, Bradley PM, Marinković P, Williams PR, Brill MS, et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat Med. 2014;20(5):555–60.

    Article  CAS  PubMed  Google Scholar 

  40. Breckwoldt MO, Armoundas AA, Aon MA, Bendszus M, O’Rourke B, Schwarzländer M, et al. Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Sci Rep. 2016;6:23251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eisner V, Lenaers G, Hajnóczky G. Mitochondrial fusion is frequent in skeletal muscle and supports excitation-contraction coupling. J Cell Biol. 2014;205(2):179–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee S, Park YY, Kim SH, Nguyen OT, Yoo YS, Chan GK, Sun X, Cho H. Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell Mol Life Sci. 2014;71(4):711–25.

    Article  CAS  PubMed  Google Scholar 

  43. Kurz FT, Aon MA, O’Rourke B, Armoundas AA. Wavelet analysis reveals heterogeneous time-dependent oscillations of individual mitochondria. Am J Physiol Heart Circ Physiol. 2010;299(5):H1736–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nivala M, Korge P, Nivala M, Weiss JN, Qu Z. Linking flickering to waves and whole-cell oscillations in a mitochondrial network model. Biophys J. 2011;101(9):2102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scaduto RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76(1):469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aon MA, Cortassa S, Maack C, O’Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem. 2007;282(30):21889–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O’Rourke B. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol. 2010;6(1):e1000657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li P, Yi Z. Synchronization of Kuramoto oscillators in random complex networks. Phys A Stat Mech Appl. 2008;387(7):1669–74.

    Article  Google Scholar 

  49. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  50. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

    Article  CAS  PubMed  Google Scholar 

  51. Aon MA, Cortassa S (n.d.). Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med. 4(6):599–613.

    Google Scholar 

  52. Slodzinski MK, Aon MA, O’Rourke B. Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J Mol Cell Cardiol. 2008;45(5):650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Porat-Shliom N, Chen Y, Tora M, Shitara A, Masedunskas A, Weigert R, et al. In vivo tissue-wide synchronization of mitochondrial metabolic oscillations. Cell Rep. 2014;9(2):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cortassa S, Aon MA. Dynamics of mitochondrial redox and energy networks: insights from an experimental-computational synergy. In: Aon MA, Saks V, Schlattner U, editors. Systems biology of metabolic and signaling networks. energy, mass and information transfer. 1st ed. Berlin: Springer; 2013. p. 115–44.

    Google Scholar 

  55. Cascante M, Marin S. Metabolomics and fluxomics approaches. Essays Biochem. 2008;45:67–81.

    Article  CAS  PubMed  Google Scholar 

  56. Barrat A, Barthélemy M, Vespignani A. Dynamical processes on complex networks. Cambridge, UK: Cambridge University Press; 2008.

    Book  Google Scholar 

  57. Albert R, Jeong H, Barabasi A. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378–82.

    Article  CAS  PubMed  Google Scholar 

  58. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101–13.

    Article  CAS  PubMed  Google Scholar 

  59. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8(6):450–61.

    Article  CAS  PubMed  Google Scholar 

  60. Aon MA, Cortassa S, Lloyd D. Chaos in biochemistry and physiology. Encyclopedia of molecular cell biology and molecular medicine. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011.

    Google Scholar 

  61. Rosenfeld S. Mathematical descriptions of biochemical networks: stability, stochasticity, evolution. Prog Biophys Mol Biol. 2011;106(2):400–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aon MA, Roussel MR, Cortassa S, O’Rourke B, Murray DB, Beckmann M, et al. The scale-free dynamics of eukaryotic cells. PLoS One. 2008;3(11):e3624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yates FE. Self-organizing systems. In: Boyd CAR, Noble D, editors. The logic of life. Oxford: Oxford University Press; 1993. p. 189–218.

    Google Scholar 

  64. Mazloom AR, et al. Modeling a complex biological network with temporal heterogeneity: cardiac myocyte plasticity as a case study. Complex. 2009;1(LNICST 4):467–86.

    Google Scholar 

  65. Tsiairis CD, Aulehla A, Aulehla A, Wiegraebe W, Baubet V, Wahl MB, et al. Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell. 2016;164(4):656–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown DA, Aon MA, Frasier CR, Sloan RC, Maloney AH, Anderson EJ, et al. Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J Mol Cell Cardiol. 2010;48(4):673–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kesten H. What is ... Percolation? Not Am Math Soc. 2006;53(5):572–3.

    Google Scholar 

  68. Zhou L, O’Rourke B. Cardiac mitochondrial network excitability: insights from computational analysis. Am J Physiol Heart Circ Physiol. 2012;302(11):H2178–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003;84(4):2734–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA. A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal. 2006;8(9–10):1651–65.

    Article  CAS  PubMed  Google Scholar 

  71. Yang L, Paavo K, Weiss JN, Qu Z. Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models. Biophys J. 2010;98:1428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Park J, Lee J, Choi C. Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS ONE. 2011;6:e23211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu X, Weaver D, Shirihai O, Hajnóczky G. Mitochondrial “kiss-and-run”: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J. 2009;28(20):3074–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Twig G, Liu X, Liesa M, Wikstrom JD, Molina AJA, Las G, et al. Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Phys Cell Physiol. 2010;299(2):C477–87.

    Article  CAS  Google Scholar 

  75. Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M, Scheckhuber C, Erjavec N, et al. Emergence of the mitochondrial reticulum from fission and fusion dynamics. Beard DA, editorPLoS Comput Biol. 2012;8(10):e1002745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blake WJ, Kaern M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature. 2003;422(6932):633–7.

    Article  CAS  PubMed  Google Scholar 

  77. Kepler TB, Elston TC. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J. 2001;81(6):3116–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci. 1963;20(2):130–41.

    Article  Google Scholar 

  79. Rosenfeld S, Kapetanovic I. Systems biology and cancer prevention: all options on the table. Gene Regul Syst Biol. 2008;2:307–19.

    Google Scholar 

  80. Aon MA, Camara AKS. Mitochondria: hubs of cellular signaling, energetics and redox balance. A rich, vibrant, and diverse landscape of mitochondrial research. Front Physiol. 2015;6:94.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kurz FT, Aon MA, O’Rourke B, Armoundas AA. Cardiac mitochondria exhibit dynamic functional clustering. Front Physiol. 2014;5:329.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Winfree AT. Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol. 1967;16:15–42.

    Article  CAS  PubMed  Google Scholar 

  83. Kuramoto Y. Chemical oscillations, waves, and turbulence. Berlin: Springer; 1984.

    Book  Google Scholar 

  84. Acebrón JA, Bonilla LL, Vicente P, Conrad J, Ritort F, Spigler R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys. 2005;77:137–85.

    Article  Google Scholar 

  85. Strogatz SH. From Kuramoto to Crawford: exploring the onset of synchronization in population of coupled oscillators. Phys D. 2000;143:1–20.

    Article  Google Scholar 

  86. Kembro JM, Aon MA, Winslow RL, O’Rourke B, Cortassa S. (n.d.) Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys J. 104(2):332–43.

    Google Scholar 

  87. Aon MA, Cortassa S, O’Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta. 1797;6–7:865–77.

    Google Scholar 

  88. Cortassa S, O’Rourke B, Aon MA. Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim Biophys Acta. 2014;1837(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  89. Calabrese EJ. Hormesis and medicine. Br J Clin Pharmacol. 2008;66(5):594–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol. 2010;45(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  91. Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. Biochim Biophys Acta. 1797;6–7:961–7.

    Google Scholar 

  92. Aon MA, Cortassa S, Juhaszova M, Sollott SJ. Mitochondrial health, the epigenome and healthspan. Clin Sci (Lond). 2016;130(15):1285–305.

    Article  CAS  Google Scholar 

  93. Tocchetti CG, Caceres V, Stanley BA, Xie C, Shi S, Watson WH, et al. GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes. 2012;61(12):3094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stary V, Puppala D, Scherrer-Crosbie M, Dillmann WH, Armoundas AA. SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition. J Appl Physiol. 2016;120(8):865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115(3):500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maack C, Dabew ER, Hohl M, Schäfers H-J, Böhm M. Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning. Circ Res. 2009;105(8):811–7.

    Article  CAS  PubMed  Google Scholar 

  99. Keller EF. Revisiting “scale-free” networks. Bioessays. Wiley Periodicals, Inc. 2005;27(10):1060–68.

    Google Scholar 

  100. Merton RK. The Matthew effect in science. Science. (80- )1968;159:56–63.

    Article  Google Scholar 

  101. West BJ. Fractal physiology and the fractional calculus: a perspective. Front Physiol. 2010;1:12.

    PubMed  PubMed Central  Google Scholar 

  102. Roussel MR, Lloyd D. Observation of a chaotic multioscillatory metabolic attractor by real-time monitoring of a yeast continuous culture. FEBS J. 2007;274(4):1011–8.

    Article  CAS  PubMed  Google Scholar 

  103. Murray AJ. Mitochondria at the extremes: pioneers, protectorates, protagonists. Extrem Physiol Med. 2014;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Aon MA, Cortassa S, Lemar KM, Hayes AJ, Lloyd D. Single and cell population respiratory oscillations in yeast: a 2-photon scanning laser microscopy study. FEBS Lett. 2007;581(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  105. Aon M, Cortassa S, O’Rourke B. Chapter 4: On the network properties of mitochondria. In: Saks V, editor. Molecular system bioenergetics. Weinheim: Wiley-VCH Verlag GmbH & Co. KG; 2007.

    Google Scholar 

  106. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8.

    Article  CAS  PubMed  Google Scholar 

  108. Passingham RE, Stephan KE, Kötter R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci. 2002;3(8):606–16.

    Article  CAS  PubMed  Google Scholar 

  109. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. Scale-free brain functional networks. Phys Rev Lett. 2005;94(1):18102.

    Article  CAS  Google Scholar 

  110. Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature. 1998;393:440–2.

    Article  CAS  PubMed  Google Scholar 

  111. Percha B, Dzakpasu R, Zochowski M, Parent J. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E Stat Nonlinear Soft Matter Phys. 2005;72(3 Pt 1):31909.

    Article  CAS  Google Scholar 

  112. Erdős P, Rényi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci. 1960;5:17–61.

    Google Scholar 

  113. Viola HM, Arthur PG, Hool LC. Evidence for regulation of mitochondrial function by the L-type Ca2+ channel in ventricular myocytes. J Mol Cell Cardiol. 2009;46(6):1016–26.

    Article  CAS  PubMed  Google Scholar 

  114. Harenberg S, Bello G, Gjeltema L, Ranshous S, Harlalka J, Seay R, et al. Community detection in large-scale networks: a survey and empirical evaluation. Wiley Interdiscip Rev Comput Stat. 2014;6(6):426–39.

    Article  Google Scholar 

  115. Dabkowski ER, Baseler WA, Williamson CL, Powell M, Razunguzwa TT, Frisbee JC, et al. Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol. 2010;299(2):H529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex Networks. Oxford University Press2014;2(3):203–71.

    Article  Google Scholar 

  117. Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, et al. The structure and dynamics of multilayer networks. Phys Rep. 2014;544(1):1–122.

    Article  Google Scholar 

  118. Kurz FT, Kembro JM, Flesia AG, Armoundas AA, Cortassa S, Aon MA, et al. Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. Wiley Interdiscip Rev Syst Biol Med. 2017;9(1):e1352.

    Article  Google Scholar 

  119. Wang W, Gong G, Wang X, Wei-LaPierre L, Cheng H, Dirksen R, et al. Mitochondrial flash: integrative reactive oxygen species and pH signals in cell and organelle biology. Antioxid Redox Signal. 2016;25(9):534–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Belykh VN, Osipov GV, Petrov VS, Suykens JAK, Vandewalle J. Cluster synchronization in oscillatory networks. Chaos. 2008;18:37106.

    Article  Google Scholar 

  121. Wang X, Zhou C, Lai CH. Multiple effects of gradient coupling on network synchronization. Phys Rev E. 2008;77(5):056208.1–5.

    Google Scholar 

  122. Tinsley MR, Nkomo S, Showalter K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat Phys. 2012;8(9):662–5.

    Article  CAS  Google Scholar 

  123. Nkomo S, Tinsley MR, Showalter K. Chimera states in populations of nonlocally coupled chemical oscillators. Phys Rev Lett. 2013;110(24):244102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a Grant-in-Aid (#15GRNT23070001) from the American Heart Association (AHA) and NIH grant 1 R01 HL135335-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix T. Kurz or Antonis A. Armoundas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurz, F.T., Aon, M.A., O’Rourke, B., Armoundas, A.A. (2017). Functional Implications of Cardiac Mitochondria Clustering. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_1

Download citation

Publish with us

Policies and ethics