Skip to main content

Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics

  • Conference paper
Bioinformatics Research and Development (BIRD 2008)

Abstract

The thermodynamics of RNA-RNA interaction consists of two components: the energy necessary to make a potential binding region accessible, i.e. unpaired, and the energy gained from the base pairing of the two interaction partners. We show here that both components can be efficiently computed using an improved variant of RNAup. The method is then applied to a set of bacterial small RNAs involved in translational control. In all cases of biologically active sRNA target interactions, the target sites predicted by RNAup are in perfect agreement with literature. In addition to prediction of target site location, RNAup can also be used to determine the mode of sRNA action. Using information about target site location and the accessibility change resulting from sRNA binding we can discriminate between positive and negative regulators of translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The ENCODE Project Consortium: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    Google Scholar 

  2. Maeda, N., Kasukawa, T., Oyama, R., Gough, J., Frith, M., Engström, P.G., Lenhard, B., Aturaliya, R.N., Batalov, S., Beisel, K.W., Bult, C.J., Fletcher, C.F., Forrest, A.R., Furuno, M., Hill, D., Itoh, M., Kanamori-Katayama, M., Katayama, S., Katoh, M., Kawashima, T., Quackenbush, J., Ravasi, T., Ring, B.Z., Shibata, K., Sugiura, K., Takenaka, Y., Teasdale, R.D., Wells, C.A., Zhu, Y., Kai, C., Kawai, J., Hume, D.A., Carninci, P., Hayashizaki, Y.: Transcript annotation in FANTOM3: Mouse gene catalog based on physical cdnas. PLoS Genetics 2, e62 (2006), doi:10.1371/journal.pgen.0020062.

    Article  Google Scholar 

  3. Mattick, J.S., Makunin, I.V.: Non-coding RNA. Hum. Mol. Genet. 15, 17–29 (2006)

    Article  Google Scholar 

  4. Kapranov, P., Cheng, J., Dike, S., Nix, D., Duttagupta, R., Willingham, A.T., Stadler, P.F., Hertel, J., Hackermüller, J., Hofacker, I.L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Madhavan, G., Piccolboni, A., Sementchenko, V., Tammana, H., Gingeras, T.R.: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007)

    Article  Google Scholar 

  5. Schubert, S., Gruenweller, A., Erdmann, V.A., Kurreck, J.: Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol. 348(4), 883–893 (2005)

    Article  Google Scholar 

  6. Vogel, J., Wagner, E.G.: Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol. 10, 262–270 (2007)

    Article  Google Scholar 

  7. The Athanasius F. Bompfünewerer RNA Consortium: Backofen, R., Flamm, C., Fried, C., Fritzsch, G., Hackermüller, J., Hertel, J., Hofacker, I.L., Missal, K.: RNAs everywhere: Genome-wide annotation of structured RNAs. J. Exp. Zool. B: Mol. Dev. Evol. 308B, 1–25 (2007)

    Article  Google Scholar 

  8. Washietl, S., Hofacker, I.L., Lukasser, M., Hüttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional non-coding RNAs in the human genome. Nature Biotech. 23, 1383–1390 (2005)

    Article  Google Scholar 

  9. Doran, J., Strauss, W.M.: Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol. 26, 353–360 (2007)

    Article  Google Scholar 

  10. Maziére, P., Enright, A.J.: Prediction of microRNA targets. Drug Discov. Today 12, 452–458 (2007)

    Article  Google Scholar 

  11. Tjaden, B., Goodwin, S.S., Opdyke, J.A., Guillier, M., Fu, D.X., Gottesman, S., Storz, G.: Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res. 34, 2791–2802 (2006)

    Article  Google Scholar 

  12. Bazeley, P.S., Shepelev, V., Talebizadeh, Z., Butler, M.G., Fedorova, L., Filatov, V., Fedorov, A.: snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions. Gene 408, 172–179 (2008)

    Article  Google Scholar 

  13. Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)

    Article  Google Scholar 

  14. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)

    Article  Google Scholar 

  15. Dimitrov, R.A., Zuker, M.: Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87(1), 215–226 (2004)

    Article  Google Scholar 

  16. Hodas, N.O., Aalberts, D.P.: Efficient computation of optimal oligo-RNA binding. Nucleic Acids Res. 32(22), 6636–6642 (2004)

    Article  Google Scholar 

  17. Ding, Y., Lawrence, C.E.: Statistical prediction of single stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucl. Acids Res. 29, 1034–1046 (2001)

    Article  Google Scholar 

  18. Ameres, S.L., Martinez, J., Schroeder, R.: Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1), 101–112 (2007)

    Article  Google Scholar 

  19. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E.: The role of site accessibility in microRNA target recognition. Nat. Genet. 39(10), 1278–1284 (2007)

    Article  Google Scholar 

  20. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Alkan, C., Karakoç, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNARNA interaction prediction and antisense RNA target search. J. Comp. Biol. 13, 267–282 (2006)

    Article  Google Scholar 

  22. Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. J. Mol. Biol. 345(5), 987–1001 (2005)

    Article  Google Scholar 

  23. Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., Hofacker, I.L.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1, 3 (2006)

    Article  Google Scholar 

  24. Wagner, E.G.H., Simons, R.W.: Antisense RNA control in bacteria, phage, and plasmids. Annu. Rev. Microbiol. 48, 713–742 (1994)

    Article  Google Scholar 

  25. Pervouchine, D.D.: IRIS: Intermolecular RNA interaction search. Proc. Genome Informatics 15, 92–101 (2004)

    Google Scholar 

  26. Aksay, C., Salari, R., Karakoc, E., Alkan, C., Sahinalp, S.C.: taveRNA: a web suite for RNA algorithms and applications. Nucleic Acids Res. 35, W325–W329 (2007)

    Article  Google Scholar 

  27. Kato, Y., Akutsu, T., Seki, H.: A grammatical approach to RNA-RNA interaction prediction. In: CMLS 2007: 2007 International Symposium on Computational Models of Life Sciences. AIP Conf. Proc., vol. 952, pp. 197–206 (2007)

    Google Scholar 

  28. Mückstein, U., Tafer, H., Hackermüller, J., Bernhard, S.B., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182 (2006)

    Article  Google Scholar 

  29. Argamana, L., Altuvia, S.: fhla repression by Oxys RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol. 300(5), 1101–1112 (2000)

    Article  Google Scholar 

  30. Urban, J.H., Vogel, J.: Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res. 35(3), 1018–1037 (2007)

    Article  Google Scholar 

  31. Sharma, C.M., Darfeuille, F., Plantinga, T.H., Vogel, J.: A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21(21), 2804–2817 (2007)

    Article  Google Scholar 

  32. Long, D., Chan, C.Y., Ding, Y.: Analysis of microRNA-target interactions by a target structure based hybridization model. In: Pac. Symp. Biocomput., pp. 64–74 (2008)

    Google Scholar 

  33. Lu, Z.J., Mathews, D.H.: Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res. 36(2), 640–647 (2008)

    Article  Google Scholar 

  34. Tafer, H., Ameres, S.L., Obernosterer, G., Gebeshuber, C.A., Schroeder, R., Martinez, J., Hofacker, I.L.: The impact of target site accessibility on the design of potent siRNAs. Nature Biotech. 26(5) (in press, 2008)

    Google Scholar 

  35. Bomfünewerer, A.F., Backofen, R., Bernhart, S.H., Hertel, J., Hofacker, I.L., Stadler, P.F., Will, S.: Variations on RNA folding and alignment: Lessons from benasque. J. Math. Biol. 56, 119–144 (2008)

    Google Scholar 

  36. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6-7), 1105–1119 (1990)

    Article  Google Scholar 

  37. Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188 (1994)

    Article  Google Scholar 

  38. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  39. Mueckstein, U., Tafer, H., Hackermueller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22(10), 1177–1182 (2006)

    Article  Google Scholar 

  40. Gottesman, S.: Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21(7), 399–404 (2005)

    Article  Google Scholar 

  41. Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., Gottesman, S.: DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. U S A 95(21), 12462–12467 (1998)

    Article  Google Scholar 

  42. Majdalani, N., Hernandez, D., Gottesman, S.: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol. Microbiol. 46(3), 813–826 (2002)

    Article  Google Scholar 

  43. Prévost, K., Salvail, H., Desnoyers, G., Jacques, J.F., Phaneuf, E., Massé, E.: The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64(5), 1260–1273 (2007)

    Article  Google Scholar 

  44. Valentin-Hansen, P., Eriksen, M., Udesen, C.: The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51(6), 1525–1533 (2004)

    Article  Google Scholar 

  45. Geissmann, T.A., Touati, D.: Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J. 23(2), 396–405 (2004)

    Article  Google Scholar 

  46. Lease, R.A., Cusick, M.E., Belfort, M.: Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl. Acad. Sci. U S A 95(21), 12456–12461 (1998)

    Article  Google Scholar 

  47. Rasmussen, A.A., Eriksen, M., Gilany, K., Udesen, C., Franch, T., Petersen, C., Valentin-Hansen, P.: Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol. Microbiol. 58(5), 1421–1429 (2005)

    Article  Google Scholar 

  48. Chen, S., Zhang, A., Blyn, L.B., Storz, G.: MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 186(20), 6689–6697 (2004)

    Article  Google Scholar 

  49. Moeller, T., Franch, T., Udesen, C., Gerdes, K., Valentin-Hansen, P.: Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16(13), 1696–1706 (2002)

    Article  Google Scholar 

  50. Kawamoto, H., Koide, Y., Morita, T., Aiba, H.: Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol. 61(4), 1013–1022 (2006)

    Article  Google Scholar 

  51. Meisner, N.C., Hackermüller, J., Uhl, V., Aszódi, A., Jaritz, M., Auer, M.: mRNA openers and closers: A methodology to modulate AU-rich element controlled mRNA stability by a molecular switch in mRNA conformation. Chembiochem. 5, 1432–1447 (2004)

    Article  Google Scholar 

  52. Hackermüller, J., Meisner, N.C., Auer, M., Jaritz, M., Stadler, P.F.: The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: A quantitative model. Gene 345, 3–12 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mourad Elloumi Josef Küng Michal Linial Robert F. Murphy Kristan Schneider Cristian Toma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mückstein, U. et al. (2008). Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70600-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70598-7

  • Online ISBN: 978-3-540-70600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics