Skip to main content

Biological Phosphorus Cycling in Arctic and Alpine Soils

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Organic phosphorus (P) is the predominant source of plant and microbial P in many arctic and alpine soils due to high moisture and low temperatures, which result in the accumulation of soil organic matter and P cycles dominated by biological processes. It has been hypothesized that the organic P accumulates in cold soils due to the inhibition of microbial activity by low temperatures. However, microbial activity has also been found to continue at low temperatures. Microbial biomass is one of the largest reservoirs of P in arctic and alpine soils, and a release of microbial P in the spring can be an important P flux. P availability in these soils is typically low during the growing season, but increases have been observed late in the growing season in arctic soils, probably due to root and microbial phosphatase activity. Fertilization studies in arctic and alpine ecosystems have had mixed results, with some plant communities typically responding more to P, whereas others are either nitrogen-limited or co-limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011) Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla GC, Varma A (eds) Soil enzymology. Soil biology, vol 22. Springer, New York

    Google Scholar 

  • Arnesen G, Beck PSA, Engelskjøn T (2007) Soil acidity, content of carbonates, and available phosphorus are the soil factors best correlated with alpine vegetation: evidence from Troms, north Norway. Arct Antarct Alp Res 39:189–199

    Article  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bilbrough CJ, Welker JM, Bowman WD (2000) Early spring nitrogen uptake by snow-covered plants: a comparison of arctic and alpine plant function under the snowpack. Arct Antarct Alp Res 32:404–411

    Article  Google Scholar 

  • Billings WD (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bioscience 23:697–704

    Article  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Bliss LC (1956) A comparison of plant development in microenvironments of arctic and alpine tundras. Ecol Monogr 26:303–337

    Article  Google Scholar 

  • Bowman WD (1994) Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities. Oikos 70:261–270

    Article  Google Scholar 

  • Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74:2085–2097

    Article  Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bremner JM, Zantua MI (1975) Enzyme activity in soils at subzero temperatures. Soil Biol Biochem 7:383–387

    Article  CAS  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1998) Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 43:1–15

    Article  Google Scholar 

  • Cassagne N, Remaury M, Gauquelin T, Fabre A (2000) Forms and profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France). Geoderma 95:161–172

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR (1981) Changes in soil properties and vegetation following disturbance of alaskan arctic tundra. J Appl Ecol 18:605–617

    Article  Google Scholar 

  • Chapin FS III, Shaver GR (1985) Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66:564–576

    Article  Google Scholar 

  • Chapin FS III, Cleve KV, Tieszen LL (1975) Seasonal nutrient dynamics of tundra vegetation at Barrow, Alaska. Arct Antarct Alp Res 7:209–226

    Article  CAS  Google Scholar 

  • Chapin FS III, Barsdate RJ, Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31:189–199

    Article  CAS  Google Scholar 

  • Chapin FS III, Johnson DA, McKendrick JD (1980) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory. J Ecol 68:189–209

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR, Kedrowski RA (1986) Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol 74:167–196

    Article  CAS  Google Scholar 

  • Chapin FS III, Fetcher N, Kielland K, Everett KR, Linkins AE (1988) Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69:693–702

    Article  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manage 177:539–557

    Article  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costello EK, Schmidt SK (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8:1471–1486

    Article  CAS  PubMed  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    Article  CAS  Google Scholar 

  • Fabre A, Pinay G, Ruffinoni C (1996) Seasonal changes in inorganic and organic phosphorus in the soil of a riparian forest. Biogeochemistry 35:419–432

    Article  Google Scholar 

  • Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities. Soil Sci Soc Am J 59:1036–1043

    Article  CAS  Google Scholar 

  • Fisk MC, Schmidt SK, Seastedt TR (1998) Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–436

    Article  Google Scholar 

  • Gordon C, Wynn JM, Woodin SJ (2001) Impacts of increased nitrogen supply on high arctic heath: the importance of bryophytes and phosphorus availability. New Phytol 149:461–471

    Article  CAS  Google Scholar 

  • Grogan P, Michelsen A, Ambus P, Jonasson S (2004) Freeze–thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biol Biochem 36:641–654

    Article  CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999) Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology 80:1883–1891

    Article  Google Scholar 

  • Jonasson S, Havström M, Jensen M, Callaghan TV (1993) In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia 95:179–186

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996) Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106:507–515

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology 80:1828–1843

    Article  Google Scholar 

  • Kielland K, Chapin FS (1994) Phosphate uptake in arctic plants in relation to phosphate supply: the role of spatial and temporal variability. Oikos 70:443–448

    Article  CAS  Google Scholar 

  • Kroehler C, Linkins A (1988) The root surface phosphatases of Eriophorum vaginatum: effects of temperature, pH, substrate concentration and inorganic phosphorus. Plant Soil 105:3–10

    Article  CAS  Google Scholar 

  • Kroehler CJ, Linkins AE (1991) The absorption of inorganic phosphate from P-labeled inositol hexaphosphate by Eriophorum vaginatum. Oecologia 85:424–428

    Article  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Larsen KS, Grogan P, Jonasson S, Michelsen A (2007) Dynamics and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. Arct Antarct Alp Res 39:268–276

    Article  Google Scholar 

  • Lipson DA, Monson RK (1998) Plant–microbe competition for soil amino acids in the alpine tundra: effects of freeze–thaw and dry–rewet events. Oecologia 113:406–414

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448

    Article  CAS  Google Scholar 

  • Lipson DA, Schadt CW, Schmidt SK (2002) Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43:307–314

    Article  CAS  PubMed  Google Scholar 

  • Litaor MI, Seastedt TR, Walker MD, Carbone M, Townsend A (2005) The biogeochemistry of phosphorus across an alpine topographic/snow gradient. Geoderma 124:49–61

    Article  CAS  Google Scholar 

  • Löffler UCM, Cypionka H, Löffler J (2008) Soil microbial activity along an arctic-alpine altitudinal gradient from a seasonal perspective. Eur J Soil Sci 59:842–854

    Article  Google Scholar 

  • Madan NJ, Deacon LJ, Robinson CH (2007) Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a high arctic polar semidesert. Polar Biol 30:559–570

    Article  Google Scholar 

  • Makarov MI, Malysheva TI, Haumaier L, Alt HG, Zech W (1997) The forms of phosphorus in humic and fulvic acids of a toposequence of alpine soils in the northern Caucasus. Geoderma 80:61–73

    Article  CAS  Google Scholar 

  • McGuire AD (1995) The responses of net primary production (NPP) and total carbon storage for the continental United States to changes in atmospheric CO2, climate, and vegetation. Bull Ecol Soc Am 76:177

    Google Scholar 

  • McGuire AD, Hobbie JE (1997) Global climate change and the equilibrium responses of carbon storage in arctic and subarctic regions. The Arctic Research Consortium of the United States, Fairbanks

    Google Scholar 

  • Melillo JM, Kicklighter DW, McGuire AD, Peterjohn WT, Newkirk KM, Zepp RG, Sontaff CH (1995) Global change and its effects on soil organic carbon stocks. Wiley, New York

    Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Moorhead DL, Linkins AE (1997) Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant Soil 189:321–329

    Article  CAS  Google Scholar 

  • Moorhead DL, Kroehler CJ, Linkins AE, Reynolds JF (1993) Extracellular acid phosphatase activities in Eriophorum vaginatum tussocks: a modeling synthesis. Arct Antarct Alp Res 25:50–55

    Article  Google Scholar 

  • Mullen RB, Schmidt SK (1993) Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems. Oecologia 94:229–234

    Article  Google Scholar 

  • Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snowmelt by the snow buttercup, Ranunculus adoneus. Arct Antarct Alp Res 30:121–125

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Nadelhoffer KJ, Johnson L, Laundre J, Giblin AE, Shaver GR (2002) Fine root production and nutrient content in wet and moist arctic tundras as influenced by chronic fertilization. Plant Soil 242:107–113

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_9

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Richardson MI, Moore IT, Soma KK, Lei FM, Wingfield JC (2003) How similar are high latitude and high altitude habitats? A review and a preliminary study of the adrenocortical response to stress in birds of the Qinghai-Tibetan Plateau. Acta Zool Sin 49:1–19

    CAS  Google Scholar 

  • Schimel JP, Kielland K, Chapin FS (1996) Nutrient availability and uptake by tundra plants. In: Reynolds JF, Tenhunen JD (eds) Ecological studies. Springer, Berlin, pp 203–221

    Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7

    Article  CAS  Google Scholar 

  • Schmidt IK, Jonasson S, Michelsen A (1999) Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–160

    Article  Google Scholar 

  • Schmidt SK, Lipson DA, Ley RE, Fisk MC, West AE (2004) Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils. Biogeochemistry 69:1–17

    Article  CAS  Google Scholar 

  • Seastedt TR, Vaccaro L (2001) Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA. Arct Antarct Alp Res 33:100–106

    Article  Google Scholar 

  • Shaver GR, Chapin FS (1986) Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arct Antarct Alp Res 18:261–268

    Article  Google Scholar 

  • Shaver GR, Chapin FS (1995) Long-term responses to factorial, NPK fertilizer treatment by Alaskan wet and moist tundra sedge species. Ecography 18:259–275

    Article  Google Scholar 

  • Shaver GR, Kummerow J (1992) Phenology, resource allocation, and growth of arctic vascular plants. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic, New York, pp 193–211

    Chapter  Google Scholar 

  • Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26:1305–1311

    Article  Google Scholar 

  • Soudzilovskaia NA, Onipchenko VG (2005) Experimental investigation of fertilization and irrigation effects on an alpine heath, northwestern Caucasus, Russia. Arct Antarct Alp Res 37:602–610

    Article  Google Scholar 

  • Theodose TA, Bowman WD (1997) Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology 78:1861–1872

    Article  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129–135

    Article  CAS  Google Scholar 

  • Turner BL, Baxter R, Mahieu N, Sjogersten S, Whitton BA (2004) Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)–tundra ecotone. Soil Biol Biochem 36:815–823

    Article  CAS  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Walker DA, Halfpenny JC, Walker MD, Wessman CA (1993) Long-term studies of snow–vegetation interactions. Bioscience 43:287–301

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6:129–143

    Article  CAS  Google Scholar 

  • Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan arctic tundra soils. Biogeochemistry 73:359–380

    Article  CAS  Google Scholar 

  • Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Weintraub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Weintraub, M.N. (2011). Biological Phosphorus Cycling in Arctic and Alpine Soils. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_12

Download citation

Publish with us

Policies and ethics