Skip to main content

Phosphorus and Global Change

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Phosphorus (P) is both an agent of global change, with P loads increasing in most global environments due to the loss of mined phosphate from agricultural, industrial, and urban environments, and is affected by global change processes such as land degradation or the need for P in biofuel production. P plays a fundamental role in food security and, because the only source for new P inputs to agriculture are phosphate rock deposits, P is a strategic, limited resource. Increasing the food supply for a growing world population requires additional P while sources are slowly being depleted. Sustainability of food, fiber, and fuel demands efforts towards maximizing the efficient use of this nutrient and defining priorities for its use. However, P is being used in production systems in such a way that large amounts of P leak into down-stream ecosystems. The negative effects of eutrophication are well known and occur now at a global scale. P use will have to be accompanied by greater efforts towards re-use, recycling, and strategic targeted applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beaton JD, Roberts TL, Halstead EH, Cowell LE (1995) Global transfers of P in fertilizer materials and agricultural commodities. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, New York, pp 7–26, SCOPE/ICSU/UNEP

    Google Scholar 

  • ANDA (2010) Main fertilizer sector indicators. Associação Nacional para Difusão de Adubos, São Paulo, Brasil. Available at http://www.anda.org.br/estatisticas.aspx Last accessed 10 Aug 2010

  • ANP (2009) National Petroleum Agency (Agência Nacional de Petróleo, Gas Natural e Biocombustíveis). Resolution ANP no 7, 19.3.2008–DOU 20.3.2008

    Google Scholar 

  • Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N, and P. Global Biogeochem Cycles 19: GB4S05, doi:10.1029/2005GB002453

  • Bilotta GS, Brazier RE, Haygarth PM, Macleod CJA, Butler P, Granger S, Krueger T, Freer J, Quinton J (2008) Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems. J Environ Qual 37:906–914

    Article  CAS  PubMed  Google Scholar 

  • Chardon WJ, Aalderink GH, van der Salm C (2007) Phosphorus leaching from cow manure patches on soil columns. J Environ Qual 36:17–22

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Chen J, Sun F (2008) Agricultural phosphorus flow and its environmental impacts in China. Sci Total Environ 405:140–152

    Article  CAS  PubMed  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305

    Article  Google Scholar 

  • Craswell ET, Vlek PLG, Tiessen H (2010) Peak phosphorus – implications for soil productivity and global food security. In: Proceedings 19th World Congress of Soil Science: Soil solutions for a changing world 1–6 August 2010, Brisbane, Australia. Published on CDROM, ASSSI, Warragul, Australia

    Google Scholar 

  • Delgado C, Rosegrant M, Steinfeld H, Shui S, Courbois C (1999) Livestock to 2020: the next food revolution. Food, agriculture and the environment discussion paper 28. IFPRI/FAO/ILRI. Available at http://www.ifpri.org/sites/default/files/publications/pubs_2020_dp_dp28.pdf Last accessed 10 Aug 2010

  • EEA (2003) Assessment and reporting on soil erosion: background and workshop report. European Environmental Agency technical report 94, EEA, Copenhagen

    Google Scholar 

  • EEA (2005) Source apportionment of nitrogen and phosphorus inputs into the aquatic environment. European Environmental Agency Report 7. EEA, Copenhagen

    Google Scholar 

  • Faeth P, Crosson P (1994) Building the case for sustainable agriculture. Environment 36(1):16–20

    Article  Google Scholar 

  • FAO (2007) The Agriculture–forest interface. Committee on Agriculture, 20th Session, Inf. 13. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2008) Current world fertilizer trends and outlook to 2012. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2009). FAOSTAT. Available at http://faostat.fao.org Last accessed 10 Aug 2010

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1237

    Article  CAS  PubMed  Google Scholar 

  • Ferreira ES, Monteiro AO (1987) Efeitos da aplicação da vinhaça nas propriedades químicas, físicas e biológicas do solo. Bol Técnico Copersucar, São Paulo 36:3–7

    Google Scholar 

  • Field CB, Campbell JE, Lobell DB (2007) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23(2):65–72

    Article  Google Scholar 

  • Fixen PE (2009) World fertilizer nutrient reserves – a view to the future. Better Crops 93:8–11

    Google Scholar 

  • Galvão SRS, Salcedo IH (2009) Soil phosphorus fractions in sandy soils amended with cattle manure for long periods. Braz J Soil Sci 33:613–622

    Google Scholar 

  • Gerber P, Chilonda P, Franceschini G, Menzi H (2005) Geographical determinant and environmental implications of livestock production intensification in Asia. Biores Technol 96:263–276

    Article  CAS  Google Scholar 

  • Hao X, Godlinski F, Chang C (2008) Distribution of phosphorus forms in soil following long-term continuous and discontinuous cattle manure applications. Soil Sci Soc Am J 71(1):90–97

    Article  Google Scholar 

  • Howarth RW, Jensen HS, Marino R, Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, New York, pp 323–346, SCOPE/ICSU/UNEP

    Google Scholar 

  • IBGE (2007) Agrarian census. Brazilian Institute of Geography and Statistics. www.ibge.gov.br

  • IBGE (2010) Aggreagated Database (SIDRA). Brazilian Institute of Geography and Statistics. http://www.sidra.ibge.gov.br/

  • IFA (2009) Assessment of fertilizer use by crop at the global level, 2007/07–2007/08. Patrick Heffer, International Fertilizer Industry Association, Paris. Available at http://www.fertilizer.org/ifa/Home-Page/STATISTICS/FUBC Last accessed 10 Aug 2010

  • Jasinski SM (2004) Phosphate rock. In: US Geological Survey Minerals Yearbook 2004. USGS, Washington, DC, pp 56.1–56.10. Available at http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/phospmyb04.pdf Last accessed 10 Aug 2010

  • Kleinman PJA, Srinivasan MS, Dell CJ, Schmidt JP, Sharpley AN, Bryant RB (2006) J Environ Qual 35:1248–1259

    Article  CAS  PubMed  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19(3):707–713

    Article  Google Scholar 

  • Krauss UH, Saam HG, Schmidt HW (1984) International strategic minerals inventory summary report – phosphate. US Geological Survey Circular 930-C. Department of the Interior, Washington DC

    Google Scholar 

  • Krueger T, Freer J, Quinton JN, Macleod CJA (2007) Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: a critical note on modeling of phosphorus transfers. Hydrol Proc 21:557–562

    Article  Google Scholar 

  • Letkeman LP, Tiessen H, Campbell CA (1996) Phosphorus transformation and redistribution during Pedogenesis of western Canadian soils. Geoderma 71:201–218

    Article  CAS  Google Scholar 

  • Lal R (1990) Soil erosion and land degradation: the global risks. In: Lal R, Stewart BA (eds) Soil degradation. Springer, New York, pp 129–172

    Google Scholar 

  • Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol 12(2):229–247

    Article  CAS  Google Scholar 

  • McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF (2009) Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Global Environ Change 19:21–33

    Article  Google Scholar 

  • McGechan MB, Lewis DR, Hooda PS (2005) Modelling through-soil transport of phosphorus to surface waters from livestock agriculture at the field and catchment scale. Sci Total Environ 344:185–199

    Article  CAS  PubMed  Google Scholar 

  • McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate change, and health. Lancet 370:1253–1263

    Article  PubMed  Google Scholar 

  • MEA (2005) Scenarios. Ecosystems and human well-being, vol 2. Millennium ecosystem assessment, Island Press, Washington DC

    Google Scholar 

  • Meybeck M, Helmer R (1989) The quality of rivers: from pristine stage to global pollution. Paleogra Palaeoclimatol Palaeoecol 75:283–309

    Article  Google Scholar 

  • Neset TSS, Bader HP, Scheidegger R, Lohm U (2008) The flow of phosphorus in food production and consumption – Linköping, Sweden, 1870–2000. Sci Total Environ 396:111–120

    Article  Google Scholar 

  • OECD-FAO (2008) Agricultural outlook 2008–2017. Organisation for Economic Co-operation and Development–Food and Agriculture Organization of the United Nations. OECD, Paris. Available from http://www.oecdbookshop.org

  • Pickard WF (2008) Geochemical constraints on sustainable development: can an advanced global economy achieve long-term stability? Glob Planet Change 61:285–299

    Article  Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137

    Article  Google Scholar 

  • Ruth L (2008) Bio or bust? The economic and ecological cost of biofuels. European Molecular Biology Organization. EMBO Rep 9(2):130–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling continental margin environments. Geochim Cosmochim Acta 57:991–1007

    Article  CAS  Google Scholar 

  • Salcedo IH, Medeiros C (1995) Phosphorus transfers from tropical terrestrial to aquatic systems – Mangroves. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, New York, pp 347–362, SCOPE/ICSU/UNEP

    Google Scholar 

  • Schröder J (2005) Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares de environment. Bioresour Technol 96:253–261

    Article  PubMed  Google Scholar 

  • Seré C, Steinfeld H (1995) World livestock production systems: current status, issues and trends. FAO Animal Production and Health Paper 127. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Sharpley AN, Hedley MJ, Sibbesen E, Hillbricht-Ilkowska A, House WA, Ryszkowski L (1995) Phosphorus transfers from terrestrial to aquatic ecosystems. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, New York, pp 171–200, SCOPE/ICSU/UNEP

    Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–58

    Article  Google Scholar 

  • Somerville C (2006) The billion-ton biofuels vision. Science 312:1277

    Article  CAS  PubMed  Google Scholar 

  • Soupir ML, Mostaghimi S, Yagow ER (2006) Transport from livestock manure applied to pastureland using phosphorus-based strategies. J Environ Qual 35:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Steinfeld H, Wassenaar T (2007) The role of livestock production in carbon and nitrogen cycles. Annu Rev Environ Resour 32:271–294

    Article  Google Scholar 

  • Tamminga S (2003) Pollution due to nutrient losses and its control in European animal production. Livest Prod Sci 84:101–111

    Article  Google Scholar 

  • Tenkorang F, Lowenberg-DeBoer J (2009) Forecasting long-term global fertilizer demand. Nutr Cycl Agroecosyst 83:233–247

    Article  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1594–1600

    Article  Google Scholar 

  • UN (2004) World population prospects: the 2004 revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, Washington, DC

    Google Scholar 

  • USEPA (1996) Environmental indicators of water quality in the United States. USEPA 841-R-96-002. US Environmental Protection Agency, Office of Water (4503F), US Government Printing Office, Washington DC

    Google Scholar 

  • USGS (2007) Phosphate rock. Mineral commodity summaries. United States Geological Survey, Washington DC. Available from http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/ Last accessed 10 Aug 2010

  • Villalba G, Liu Y, Schroder H, Ayres RU (2008) Global phosphorus flows in the industrial economy from a production perspective. J Indust Ecol 12(4):557–569

    Article  Google Scholar 

  • Weikard HP, Seyhan D (2009) Distribution of phosphorus resources between rich and poor countries: the effect of recycling. Ecol Econ 68:1749–1755

    Article  Google Scholar 

  • White PJ, Hammond JP (2009) The sources of phosphorus in the waters of Great Britain. J Environ Qual 38:13–26

    Article  CAS  PubMed  Google Scholar 

  • WWF (2009) O impacto do Mercado mundial de biocombustíveis na expansão da agricultura brasileira e suas consequências para as mudanças climáticas. Programa de Agricultura e Meio Ambiente, World-Wide Fund for Nature, Brasília, Brasil

    Google Scholar 

  • Yang D, Kanae S, Oki T, Koike T, Musiake K (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17:2913–2928

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Tiessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Tiessen, H., Ballester, M.V., Salcedo, I. (2011). Phosphorus and Global Change. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_18

Download citation

Publish with us

Policies and ethics