Skip to main content

Hardware Implementation of Chaos-Secured Optical Communication Systems

  • Chapter
Chaos-Based Cryptography

Part of the book series: Studies in Computational Intelligence ((SCI,volume 354))

  • 2278 Accesses

Abstract

In the present chapter, the implementation and performance of contemporary chaotic optical communication systems is presented, focusing on the physical layer encryption methods proposed so far. In communication systems that encrypt high-speed data within broadband chaotic carriers, authorized users share identical chaotic oscillators that are capable – after synchronization – of emitting exactly the same broadband chaotic optical signal. Several techniques - based on all-optical, electro-optical or photonic integrated circuits - that increase fiber communication security will be presented, while their drawbacks and limitations will be criticized. The efficiency of data encryption at the transmitter and the recovery performance from an authorized receiver are also presented through diverse fiber transmission experiments. In these experiments the security discrimination level between authorized and eavesdropping receivers are discussed. Finally, ultra-fast physical random number generators based on chaotic optical signals, as well as the potential of exploiting them in secure communication systems, are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H.D.I., Kennel, M.B., Buhl, M., et al.: Chaotic dynamics in erbium-doped fiber ring lasers. Phys. Rev. A 60, 2360–2374 (1999)

    Google Scholar 

  2. Abarbanel, H.D.I., Kennel, M.B., Illing, L., et al.: Synchronization and communication using semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron 37, 1301–1311 (2001)

    Google Scholar 

  3. Agrawal, G.P., Dutta, N.K.: Semiconductor lasers. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  4. Agrawal, G.P., Dutta, N.K.: Semiconductor lasers, 2nd edn. Kluwer Academic Publishers, Massachusetts (2000)

    Google Scholar 

  5. Annovazzi-Lodi, V., Donati, S., Scire, A.: Synchronization of chaotic injected laser systems and its application to optical cryptography. IEEE J. Quantum Electron 32, 953–959 (1996)

    Google Scholar 

  6. Annovazzi-Lodi, V., Benedetti, M., Merlo, S., et al.: Message encryption by phase modulation of a chaotic optical carrier. IEEE Photon Technol. Lett. 19, 76–78 (2007)

    Google Scholar 

  7. Argyris, A., Kanakidis, D., Bogris, A., et al.: Experimental evaluation of an open-loop all-optical chaotic communication system. IEEE J. Sel. Topics Quantum Electron 10, 927–935 (2004)

    Google Scholar 

  8. Argyris, A., Kanakidis, D., Bogris, A., et al.: First experimental demonstration of an all-optical chaos encrypted transmission system. In: Proc. ECOC 2004, Tu4.5.1, pp. 256–257 (2004)

    Google Scholar 

  9. Argyris, A., Kanakidis, D., Bogris, A., et al.: Spectral synchronization in chaotic optical communication systems. IEEE J. Quantum Electron 41, 892–897 (2005)

    Google Scholar 

  10. Argyris, A., Syvridis, D., Larger, L., et al.: Chaos-based communications at high bit rates using commercial fiber-optic links. Nature 438, 343–346 (2005)

    Google Scholar 

  11. Argyris, A., Hamacher, M., Chlouverakis, K.E., et al.: A photonic integrated device for chaos applications in communications. Phys. Rev. Lett. 100, 194101 (2008)

    Google Scholar 

  12. Argyris, A., Bogris, A., Hamacher, M., et al.: Experimental evaluation of subcarrier modulation in all-optical chaotic communication systems. Opt. Lett. 35, 109–111 (2010)

    Google Scholar 

  13. Argyris, A., Grivas, E., Hamacher, M., et al.: Chaos-on-a-chip secures data transmission in optical fiber links. Opt. Express 18, 5188–5198 (2010)

    Google Scholar 

  14. Argyris, A., Grivas, E., Bogris, A., et al.: Transmission effects in wavelength division multiplexed chaotic optical communication systems. IEEE J. Lightwave Technol. 28, 3107–3114 (2010)

    Google Scholar 

  15. Argyris, A., Deligiannidis, S., Pikasis, E., et al.: Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18, 18763–18768 (2010)

    Google Scholar 

  16. Bauer, S., Brox, O., Kreissl, J., et al.: Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E 69, 016206 (2004)

    Google Scholar 

  17. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Int. Conf. Comput. Systems & Signal Processing 1984, India, pp. 175–179 (1984)

    Google Scholar 

  18. Bogris, A., Chlouverakis, K.E., Argyris, A., et al.: Subcarrier modulation in all-optical chaotic communication systems. Opt. Lett. 32, 2134–2136 (2007)

    Google Scholar 

  19. Bogris, A., Argyris, A., Syvridis, D.: Analysis of the optical amplifier noise effect on electrooptically generated hyperchaos. IEEE J. Quantum Electron 47, 552–559 (2007)

    Google Scholar 

  20. Bogris, A., Rizomiliotis, P., Chlouverakis, K.E., et al.: Feedback phase in optically generated chaos: A secret key for cryptographic applications. IEEE J. Quantum Electron 44, 119–124 (2008)

    Google Scholar 

  21. Bucci, M., Germani, L., Luzzi, R., et al.: A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC. IEEE Trans. Comput. 52, 403–409 (2003)

    Google Scholar 

  22. Chen, H.F., Liu, J.M.: Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation. IEEE J. Quantum Electron 36, 27–34 (2000)

    Google Scholar 

  23. Colet, P., Roy, R.: Digital communication with synchronized chaotic lasers. Opt. Lett. 19, 2056–2058 (1994)

    Google Scholar 

  24. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65–68 (1993)

    Google Scholar 

  25. Danger, J.L., Guilley, S., Hoogvorst, P.: High speed true random number generator based on open loop structures in FPGAs. Microelectron J. 40, 1650–1656 (2009)

    Google Scholar 

  26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Dynes, J.F., Yuan, Z.L., Sharpe, A.W., et al.: A high speed, post-processing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)

    Google Scholar 

  28. Fischer, I., Van Tartwijk, G.H.M., Levine, A.M., et al.: Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. Phys. Rev. Lett. 76, 220–223 (1996)

    Google Scholar 

  29. Ferguson, N., Schneier, B.: Practical cryptography. John Wiley & Sons, Chichester (2003)

    Google Scholar 

  30. Franck, T., Brorson, S.D., Moller-Larsen, A., et al.: Synchronization phase diagrams of monolithic colliding pulse mode-locked lasers. IEEE Photon Technol. Lett. 8, 40–42 (1996)

    Google Scholar 

  31. Fujino, H., Ohtsubo, J.: Synchronization of chaotic oscillations in mutually coupled semiconductor lasers. Opt. Rev. 8, 351–357 (2001)

    Google Scholar 

  32. Gastaud, N., Poinsot, S., Larger, L., et al.: Electro-optical chaos for multi-10 Gbit/s optical transmissions. Electr. Lett. 40, 898–899 (2004)

    Google Scholar 

  33. Giacomelli, G., Politi, A.: Relationship between delayed and spatially extended dynamical systems. Phys. Rev. Lett. 76, 2686–2689 (1996)

    Google Scholar 

  34. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Google Scholar 

  35. Gleeson, J.T.: Truly random number generator based on turbulent electroconvection. Appl. Phys. Lett. 81, 1949 (2002)

    Google Scholar 

  36. Goedgebuer, J.P., Levy, P., Larger, L., et al.: Optical communication with synchronized hyperchaos generated electooptically. IEEE J. Quantum Electron 38, 1178–1183 (2002)

    Google Scholar 

  37. Halle, K.S., Wu, C.W., Itoh, M., et al.: Spread spectrum communication through modulation of chaos. Int. J. Bifurcation & Chaos 3, 469–477 (1993)

    MATH  Google Scholar 

  38. Heil, T., Mulet, J., Fischer, I., et al.: On/off phase shift-keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quantum Electron 38, 1162–1170 (2002)

    Google Scholar 

  39. Hirano, K., et al.: Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express 18, 5512–5524 (2010)

    Google Scholar 

  40. Holman, W.T., Connelly, J.A., Dowlatabadi, A.B.: An integrated analog/digital random noise source. IEEE Trans. Circuits Syst. I 44, 521–528 (1997)

    Google Scholar 

  41. http://nova.uib.es/project/occult

  42. http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf (2001)

  43. Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979)

    Google Scholar 

  44. Ikuma, Y., Ohtsubo, J.: Dynamics in compound cavity semiconductor lasers induced by small external cavity length change. IEEE J. Quantum Electron 34, 1240–1246 (1998)

    Google Scholar 

  45. Kanter, I., Aviad, Y., Reidler, I., et al.: An optical ultrafast random bit generator. Nature Photon 4, 58–61 (2010)

    Google Scholar 

  46. Kanter, I., Butkovski, M., Peleg, Y., et al.: Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography. Opt. Express 18, 18292–18302 (2010)

    Google Scholar 

  47. Kao, Y.H., Wang, N.M., Chen, H.M.: Mode description of routes to chaos in external-cavity coupled semiconductor lasers. IEEE J. Quantum Electron 30, 1732–1739 (1994)

    Google Scholar 

  48. Kocarev, L., Halle, K.S., Eckert, K., et al.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurcation & Chaos 2, 709–713 (1992)

    MATH  Google Scholar 

  49. Kusumoto, K., Ohtsubo, J.: 1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers. Opt. Lett. 27, 989–991 (2002)

    Google Scholar 

  50. Kusumoto, K., Ohtsubo, J.: Anticipating synchronization based on optical injection-locking in chaotic semiconductor lasers. IEEE J. Quantum Electron 39, 1531–1536 (2003)

    Google Scholar 

  51. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron 16, 347–355 (1980)

    Google Scholar 

  52. Larger, L., Dudley, J.M.: Nonlinear dynamics: Optoelectronic chaos. Nature 465, 41–42 (2010)

    Google Scholar 

  53. Larger, L., Goedgebuer, J.P., Delorme, F.: Optical encryption system using hyperchaos generated by an optoelectronic wavelength oscillator. Phys. Rev. E 57, 6618–6624 (1998)

    Google Scholar 

  54. Larger, L., Goedgebuer, J.P., Udaltsov, V.: Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos. C. R. Physique 5, 669–681 (2004)

    Google Scholar 

  55. Lavrov, R., Peil, M., Jacquot, M., et al.: Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Phys. Rev. E 80, 026207 (2009)

    Google Scholar 

  56. Lavrov, R., Jacquot, M., Larger, L.: Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications. IEEE J. Quantum Electron 46, 1430–1435 (2010)

    Google Scholar 

  57. Liu, J.M., Simpson, T.B.: Four-wave mixing and optical modulation in a semiconductor laser. IEEE J. Quantum Electron 30, 957–965 (1994)

    Google Scholar 

  58. Liu, J.M., Chen, H.F., Tang, S.: Synchronized chaotic optical communications at high bit-rates. IEEE J. Quantum Electron 38, 1184–1196 (2002)

    Google Scholar 

  59. Liu, Y., Chen, H.F., Liu, J.M., et al.: Communication using synchronization of optical-feedback-induced chaos in semiconductor lasers. IEEE Trans. Circuits Syst. I 48, 1484–1490 (2001)

    Google Scholar 

  60. Liu, Y., Takiguchi, Y., Aida, T., et al.: Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers. IEEE J. Quantum Electron 39, 269–278 (2003)

    Google Scholar 

  61. Locquet, A., Rogister, F., Sciamanna, M., et al.: Two types of synchronization in unidirectionally coupled chaotic external-cavity semiconductor lasers. Phys. Rev. E 64, 045203 (2001)

    Google Scholar 

  62. Locquet, A., Massoler, C., Mirasso, C.R.: Synchronization regimes of optical-feedback-induced chaos in unidirectionally coupled semiconductor lasers. Phys. Rev. E 65, 056205 (2002)

    Google Scholar 

  63. Locquet, A., Masoller, C., Megret, P., et al.: Comparison of two types of synchronization of external-cavity semiconductor lasers. Opt. Lett. 27, 31–33 (2002)

    Google Scholar 

  64. Marsaglia, G.: DIEHARD: A battery of tests of randomness (1996), http://stat.fsu.edu/

  65. Masoller, C.: Spatio-temporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback. Chaos 7, 455–462 (1997)

    MATH  Google Scholar 

  66. Masoller, C.: Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001)

    Google Scholar 

  67. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Google Scholar 

  68. Mirasso, C.R., Colet, P., Garcia-Fernandez, P.: Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photon Technol. Lett. 8, 299–301 (1996)

    Google Scholar 

  69. Mirasso, C.R., Mulet, J., Masoller, C.: Chaos shift keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme. IEEE Photon Technol. Lett. 14, 456–458 (2002)

    Google Scholar 

  70. Mork, J., Tromborg, B., Christiansen, P.L.: Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quantum Electron 24, 123–133 (1998)

    Google Scholar 

  71. Murakami, A., Ohtsubo, J., Liu, Y.: Stability analysis of semiconductor laser with phase-conjugate feedback. IEEE J. Quantum Electron 33, 1825–1831 (1997)

    Google Scholar 

  72. Murakami, A., Ohtsubo, J.: Synchronization of feedback-induced chaos in semiconductor lasers by optical injection. Phys. Rev. A 65, 033826 (2002)

    Google Scholar 

  73. Ohtsubo, J.: Feedback induced instability and chaos in semiconductor lasers and their applications. Opt. Rev. 6, 1–15 (1999)

    Google Scholar 

  74. Ohtsubo, J.: Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback. IEEE J. Quantum Electron 38, 1141–1154 (2002)

    Google Scholar 

  75. Pan, M.W., Shi, B.P., Gray, G.R.: Semiconductor laser dynamics subject to strong optical feedback. Opt. Lett. 22, 166–168 (1997)

    Google Scholar 

  76. Parlitz, U., Chua, L.O., Kocarev, L., et al.: Transmission of digital signals by chaotic synchronization. Int. J. Bifurcation & Chaos 2, 973–977 (1992)

    MATH  Google Scholar 

  77. Paul, J., Lee, M.W., Shore, K.A.: 3.5-GHz signal transmission in an All-optical chaotic communication scheme using 1550-nm diode lasers. IEEE Photon Technol. Lett. 17, 920–922 (2005)

    Google Scholar 

  78. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    MathSciNet  Google Scholar 

  79. Petermann, K.: Laser diode modulation and noise. Kluwer, Dordrecht (1998)

    Google Scholar 

  80. Qi, B., Chi, Y.M., Lo, H.K., et al.: High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312–314 (2010)

    Google Scholar 

  81. Reidler, I., Aviad, Y., Rosenbluh, M., et al.: Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 24102 (2009)

    Google Scholar 

  82. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    MathSciNet  MATH  Google Scholar 

  83. Rukhin, A., et al.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22, Revision 1a (2010)

    Google Scholar 

  84. Sano, T.: Antimode dynamics and chaotic itinerancy in the coherent collapse of semiconductor-lasers with optical feedback. Phys. Rev. A 50, 2719–2726 (1994)

    Google Scholar 

  85. Sargent III, M., Scully, M.O., Lamb, J.E.: Laser physics. Addison-Wesley, Massachusetts (1974)

    Google Scholar 

  86. Shu, L., Costello Jr., D.J.: Error control coding: fundamentals and applications. Prentice-Hall, New Jersey (1983)

    Google Scholar 

  87. Simpson, T.B., Liu, J.M.: Period-doubling cascades and chaos in a semiconductor laser with optical injection. Phys. Rev. A 51, 4185–4185 (1995)

    Google Scholar 

  88. Sivaprakasam, S., Shahverdiev, E.M., Spencer, P.S., et al.: Experimental demonstration of anticipating solution in chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 87, 4101–4103 (2001)

    Google Scholar 

  89. Takiguchi, Y., Liu, Y., Ohtsubo, J.: Low-frequency fluctuation and frequency-locking in semiconductor lasers with long external cavity feedback. Opt. Rev. 6, 399–401 (1999)

    Google Scholar 

  90. Tang, S., Liu, J.M.: Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers. Opt. Lett. 26, 1843–1845 (2001)

    Google Scholar 

  91. Tang, S., Liu, J.M.: Synchronization of high-frequency chaotic optical pulses. Opt. Lett. 26, 596–598 (2001)

    Google Scholar 

  92. Tkach RW, Chraplyvy AR (1986) Regimes of feedback effects in 1.5 μm distributed feedback lasers. J Lightwave Technol LT-4:1655–1661

    Google Scholar 

  93. Tokunaga, C., Blaauw, D., Mudge, T.: True random number generator with a metastability-based quality control. IEEE J. Solid-State Circ. 43, 78–85 (2008)

    Google Scholar 

  94. Toral, R., Chakrabarti, A.: Generation of Gaussian distributed random numbers by using a numerical inversion method. Comp. Phys. Commun. 74, 327–334 (1993)

    MathSciNet  MATH  Google Scholar 

  95. Tromborg, B., Osmundsen, J.H., Olesen, H.: Stability analysis for a semiconductor laser in an external cavity. IEEE J. Quantum Electron QE-20, 1023–1031 (1984)

    Google Scholar 

  96. Uchida, A., Liu, Y., Davis, P.: Characteristics of chaotic masking in synchronized semiconductor lasers. IEEE J. Quantum Electron 39, 963–970 (2003)

    Google Scholar 

  97. Uchida, A., Heil, T., Liu, Y., et al.: High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection. IEEE J. Quantum Electron 39, 1462–1467 (2003)

    Google Scholar 

  98. Uchida, A., et al.: Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon 2, 728–732 (2008)

    Google Scholar 

  99. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al.: Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007)

    Google Scholar 

  100. Ushakov, O., Bauer, S., Brox, O., et al.: Self-organization in semiconductor lasers with ultrashort optical feedback. Phys. Rev. Lett. 92, 043902 (2004)

    Google Scholar 

  101. Van Tartwijk, G.H.M., Agrawal, G.P.: Laser instabilities: a modern perspective. Prog. Quantum Electron 22, 43–122 (1998)

    Google Scholar 

  102. Van Wiggeren, G.D., Roy, R.: Communications with chaotic lasers. Science 279, 1198–1200 (1998)

    Google Scholar 

  103. Vicente, R., Perez, T., Mirasso, C.R.: Open- versus close-loop performance of synchronized chaotic external-cavity semiconductor lasers. IEEE J. Quantum Electron 38, 1197–1204 (2002)

    Google Scholar 

  104. Wayne, M.A., Kwiat, P.G.: Low-bias high-speed quantum random number generator via shaped optical pulses. Opt. Express 18, 9351–9357 (2010)

    Google Scholar 

  105. Wiesner, S.: Conjugate coding. ACM Sigact News 15, 78–88 (1983)

    Google Scholar 

  106. Wilson, S.G.: Digital Modulation and Coding. Prentice-Hall, New Jersey (1996)

    MATH  Google Scholar 

  107. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcation & Chaos 3, 1619–1627 (1993)

    MATH  Google Scholar 

  108. Yousefi, M., Barbarin, Y., Beri, S.: New role for nonlinear dynamics and chaos in integrated semiconductor laser technology. Phys. Rev. Lett. 98, 044101 (2007)

    Google Scholar 

  109. Zhang, J.Z., Wang, A.B., Wang, J.F., et al.: Wavelength division multiplexing of chaotic secure and fiber-optic communications. Opt. Express 17, 6357–6367 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Argyris, A. (2011). Hardware Implementation of Chaos-Secured Optical Communication Systems. In: Kocarev, L., Lian, S. (eds) Chaos-Based Cryptography. Studies in Computational Intelligence, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20542-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20542-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20541-5

  • Online ISBN: 978-3-642-20542-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics