Skip to main content

Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles

  • Chapter
  • First Online:
  • 1294 Accesses

Abstract

Considerate re-use of elements of the Sobel-gradient operator also for corner detection in a new scheme allows unified extraction of edge-, corner- and linearly shaded blob features that can be done in real time taking recent microprocessor technology (GPUs) into account. In turn, this allows much more detailed visual recognition of complex road scenes in connection with corresponding knowledge bases on motion processes for dynamic vision. These subjects are discussed in a survey fashion as background material. The article concentrates on the new corner detection scheme looking directly for curvature components of the intensity function in several pairs of orthogonal directions. Typical results are shown for traffic scenes on highways. The new scheme is especially suited for recognizing blinking spot lights and brake (stop) lights.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dickmanns ED, Zapp A (1987) Autonomous high speed road vehicle guidance by computer vision. 10th IFAC World Congr. Munich, Prepr, vol 4, pp 232-237

    Google Scholar 

  2. Masaki I (1992++) yearly International symposium on intelligent vehicles – Proceedings, in later years appearing under IEEE – ITSC sponsorship

    Google Scholar 

  3. Thomanek F, Dickmanns D (1992) Obstacle d, tracking and state estimation for autonomous road vehicle guidance. IEEE/RSJ international conference on intelligent robots and systems, IROS, vol. II, Raleigh, pp 1399-1406

    Google Scholar 

  4. Fuerstenberg KC, Dietmayer KCJ, Willhoeft V (2002) Pedestrian recognition in urban traffic using a vehicle based multilayer laser-scanner. IEEE intelligent vehicle symposium, Versaille

    Google Scholar 

  5. Wang CC, Thorpe C, Suppe A (2003) Ladar-based detection and tracking of moving objects from a ground vehicle at high speeds. IEEE-symposium on intelligent vehicles (IV)

    Google Scholar 

  6. Fuerstenberg KC, Dietmayer KCJ (2004) Object tracking and classification for multiple active safety and comfort applications using a multilayer laserscanner. IEEE-symposium on intelligent vehicles, Parma, pp 807-812

    Google Scholar 

  7. von Holt V (2004) Integrale Multisensorielle Fahrumgebungserfassung nach dem 4D-Ansatz. Dissertation, UniBwM, LRT

    Google Scholar 

  8. DARPA (2006) Urban challenge, route network definition file (RNDF) and mission data file (MDF) formats, May 12

    Google Scholar 

  9. Dickmanns ED (1995) Road vehicle eyes for high precision navigation. In: Linkwitz et al (eds) High precision navigation. Dümmler, Bonn, pp 329-336

    Google Scholar 

  10. Dickmanns ED (2007) Dynamic vision for perception and control of motion. Springer, London

    Google Scholar 

  11. Dickmanns ED (1987) 4-D dynamic scene analysis with integral spatio-temporal models. In: Bolles R, Roth B (eds) Robotics research, 4th international symposium, MIT Press, Cambridge, MA

    Google Scholar 

  12. Gregor R, Lützeler M, Pellkofer M, Siedersberger K-H, Dickmanns ED (2000) EMS-vision: A perceptual system for autonomous vehicles. IEEE intelligent vehicle symposium, Dearborn, pp 52–57

    MATH  Google Scholar 

  13. Gregor R, Dickmanns ED (2000) EMS-vision: Mission performance on road networks. IEEE intelligent vehicle symposium, Dearborn, pp 140-145

    Google Scholar 

  14. Goebl M, Faerber G (2007) A real-time-capable hard- and software architecture for joint image and knowledge processing in cognitive automobiles. Proceedings of the IEEE intelligent vehicle symposium, IEEE-Press, p 734-740

    Google Scholar 

  15. Hofmann U (2004) Zur visuellen Umfeldwahrnehmung autonomer Fahrzeuge. Dissertation, UniBw Munich, LRT

    Google Scholar 

  16. Kuehnle A (1991) Symmetry-based recognition of vehicle rears. In: Pattern recognition letters, vol 12. North-Holland, pp 249–258

    Google Scholar 

  17. Zielke T, Brauckmann M, von Seelen W (1993) Intensity and edge-based symmetry detection with an application to car following. CGVIP: Image Understanding 58:177–190

    Google Scholar 

  18. Schmid M (1993) 3-D-Erkennung von Fahrzeugen in Echtzeit aus monokularen Bildfolgen. Dissertation UniBw Munich, LRT Also: Fortschrittsberichte VDI Verlag, Reihe 10, Nr. 293

    Google Scholar 

  19. Thomanek F (1996) Visuelle Erkennung und Zustandsschätzung von mehreren Straßenfahrzeugen zur autonomen Fahrzeugführung. Dissertation, UniBw Munich, LRT. Also: Fortschrittsberichte VDI Verlag, Reihe 12, Nr. 272

    Google Scholar 

  20. Estable S, Schick J, Stein F, Janssen R, Ott R, Ritter W, Zheng YJ (1994) A real-time traffic sign recognition system. In: Proceedings of the international symposium on intelligent vehicles’94, Paris, pp 213–218

    Google Scholar 

  21. Schiehlen J (1995) Kameraplattformen fuer aktiv sehende Fahrzeuge. Dissertation, UniBw Munich, LRT. Also: Fortschrittsberichte VDI Verlag, Reihe 8, Nr. 514

    Google Scholar 

  22. Lützeler M (2002) Fahrbahnerkennung zum Manövrieren auf Wegenetzen mit aktivem Sehen. Dissertation, UniBw Munich, LRT

    Google Scholar 

  23. Pellkofer M (2003) Verhaltensentscheidung für autonome Fahrzeuge mit Blickrichtungs-steuerung. Dissertation, UniBw Munich, LRT

    Google Scholar 

  24. Fuchs T (2008) Das Gehirn – ein Beziehungsorgan. Kohlhammer

    Google Scholar 

  25. Dickmanns ED (2006) Corner detection with minimal effort on multiple scales. Proceedings of Vision Application (VISAPP), Setubal

    Google Scholar 

  26. Dickmanns ED (2008) Generalized Nonplanarity Features. UniBwM/LRT/TAS/TR 2008–08

    Google Scholar 

  27. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, pp 147-151

    Google Scholar 

  28. Tomasi C, Kanade T (1991) Detection and tracking of point features. CMU, Tech. Rep. CMU-CS-91–132, Pittsburgh, PA

    Google Scholar 

  29. Schweitzer M, Wuensche H-J (2009) Efficient keypoint matching for robot vision using GPUs. In: Proceedings of the 5th IEEE workshop on embedded computer vision (ECVW), ICCV-Kyoto

    Google Scholar 

  30. Bay H, Tuytelaars T, Gool LV (2006) Surf: Speeded up robust features. In: Proceedings of ECCV

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst D. Dickmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dickmanns, E.D. (2012). Detailed Visual Recognition of Road Scenes for Guiding Autonomous Vehicles. In: Chakraborty, S., Eberspächer, J. (eds) Advances in Real-Time Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24349-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24349-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24348-6

  • Online ISBN: 978-3-642-24349-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics