Skip to main content

Implementation of Hybrid Monte Carlo (Molecular Dynamics) Quantum Mechanical Methodology for Modeling of Condensed Phases on High Performance Computing Environment

  • Conference paper
ICT Innovations 2011 (ICT Innovations 2011)

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 150))

Included in the following conference series:

Abstract

The overall objective of the present work is to develop and implement a novel multi-step general computational methodology for modeling of complex condensed-phase systems on high-performance computing environments. First, molecular dynamics (MD) or Monte Carlo (MC) simulations of the free interacting clusters, as well as of clusters microsolvated by several molecules from the medium (solvent) are performed.MD orMC simulations are carried out applying either classical empirical interaction potentials, or implementing quantum mechanical MD or MC methodologies. Quantum mechanical MD simulations are carried out with the Born-Oppenheimer approach (BOMD), the Car-Parrinello (CPMD) approach, or using the atom-centered density matrix propagation scheme (ADMP). Sequential to this step, a series of suitably chosen configurations from the statistical physics simulations corresponding to the equilibrated system, which are mutually statistically independent, are subjected to further more rigorous quantum mechanical analysis. In this way, a realistic simulation of complex physico-chemical systems is enabled, in real computational time, without loosing, in statistical sense, any relevant information about the system. Due to the complexity of the algorithms which are used for this hybrid approach, it is of crucial importance to be able to implement the computational strategy on high-performance computing environment. Often, the overall CPU time which is required is very high. Therefore, achieving good parallel efficiency for calculations of such type is far from a trivial task without the use of high-performance low-latency MPI interconnect.

This paper is based on the work done in the framework of the SEE-GRID-SCI FP7 EC funded project, with partial support from NSFB grant D002 - 146/2008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coutinho, K., Canuto, S.: Adv. Quantum Chem. 28, 89 (1997)

    Article  Google Scholar 

  2. Pejov, L., Spångberg, D., Hermansson, K.: J. Chem. Phys. 133, 174513 (2010)

    Article  Google Scholar 

  3. Hermansson, K., Bopp, P.A., Spångberg, D., Pejov, L., Bakó, I., Mitev, P.D.: Chem. Phys. Lett. (Frontier Article) (in press)

    Google Scholar 

  4. Pejov, L., Spångberg, D., Hermansson, K.: J. Phys. Chem. A 109, 5144 (2005)

    Article  Google Scholar 

  5. Sahpaski, D., Pejov, L., Misev, A.: LNCS (in press)

    Google Scholar 

  6. Helgaker, T., Uggerud, E., Jensen, H.J.A.: Chem. Phys. Lett. 173, 145 (1990)

    Article  Google Scholar 

  7. Uggerud, E., Helgaker, T.: J. Am. Chem. Soc. 114, 4265 (1992)

    Article  Google Scholar 

  8. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 1998 (Revision A.11). Gaussian, Inc., Pittsburgh PA (1998)

    Google Scholar 

  9. Schlegel, H.B., Iyengar, S.S., Li, X., Millam, J.M., Voth, G.A., Scuseria, G.E., Frisch, M.J.: J. Chem. Phys. 117, 8694 (2002)

    Article  Google Scholar 

  10. Schlegel, H.B., Millam, J.M., Iyengar, S.S., Voth, G.A., Daniels, A.D., Scuseria, G.E., Frisch, M.J.: J. Chem. Phys. 114, 9758 (2001)

    Article  Google Scholar 

  11. Iyengar, S.S., Schlegel, H.B., Millam, J.M., Voth, G.A., Scuseria, G.E., Frisch, M.J.: J. Chem. Phys. 115, 10291 (2001)

    Article  Google Scholar 

  12. Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985)

    Article  Google Scholar 

  13. Coutinho, K., Canuto, S.: DICE: a Monte Carlo Program for Molecular Liquid Simulation. University of São Paulo, São Paulo (2003)

    Google Scholar 

  14. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  15. Ufimtsev, I.S., Kalinichev, A.G., Martinez, T.J., James Kirkpatrick, R.: Chem. Phys. Lett. 442, 128 (2007)

    Article  Google Scholar 

  16. Kocevski, V., Pejov, L.: J. Phys. Chem. A 114, 4354 (2010)

    Article  Google Scholar 

  17. Rauhot, G., Pulay, P.: J. Phys. Chem. 99, 14572 (1995)

    Article  Google Scholar 

  18. Chaban, C.M., Jung, J.O., Gerber, R.B.: J. Chem. Phys. 111, 1823 (1999)

    Article  Google Scholar 

  19. Yagi, K., Hirao, K., Taketsugu, T., Schmidt, M.W., Gordon, M.S.: J. Chem. Phys. 121, 1383 (2004)

    Article  Google Scholar 

  20. Simons, G., Parr, R.G., Finlan, J.M.: J. Chem. Phys. 59, 3229 (1973)

    Article  Google Scholar 

  21. Carney, D.G., Curtiss, L.A., Langhoff, S.R.: J. Mol. Spectrosc. 61, 371 (1976)

    Article  Google Scholar 

  22. Wong, M.W., Frisch, M.J., Wiberg, K.B.: J. Am. Chem. Soc. 113, 4776 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastas Misev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Misev, A., Sahpaski, D., Pejov, L. (2012). Implementation of Hybrid Monte Carlo (Molecular Dynamics) Quantum Mechanical Methodology for Modeling of Condensed Phases on High Performance Computing Environment. In: Kocarev, L. (eds) ICT Innovations 2011. ICT Innovations 2011. Advances in Intelligent and Soft Computing, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28664-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28664-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28663-6

  • Online ISBN: 978-3-642-28664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics