Skip to main content

Scope of the present paper is to provide an assessment of the state of the art of predictive uncertainty in flood forecasting. After defining what is meant by predictive uncertainty, the role and the importance of estimating predictive uncertainty within the context of flood management and in particular flood emergency management, is here discussed. Furthermore, the role of model and parameter uncertainty is presented together with alternative approaches aimed at taking them into account in the estimation of predictive uncertainty. In terms of operational tools, the paper also describes three of the recently developed Hydrological Uncertainty Processors. Finally, given the increased interest in meteorological ensemble precipitation forecasts, the paper discusses possible approaches aimed at incorporating input forecasting uncertainty in predictive uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bertalanffy, L., General System Theory, George Braziller, New York, New York, 1968.

    Google Scholar 

  • Beven, K.J. and Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction, Hydrol. Processes, 6, 279–298.

    Google Scholar 

  • Beven, K.J. and Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems, J. Hydrol., 249, 11–29.

    Article  Google Scholar 

  • Buizza, R., Miller, M., and Palmer, T.N., 1999. Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteorol. Soc., 125, 2887–2908.

    Article  Google Scholar 

  • de Finetti, B., 1975. Theory of Probability, vol. 2. Wiley, Chichester, UK.

    Google Scholar 

  • De Groot, M.H., 1970. Optimal Statistical Decisions, McGraw-Hill, New York.

    Google Scholar 

  • Dempster, A.P., Laird, N.M., and Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Series B, 39, 1–39.

    Google Scholar 

  • Draper, D., 1995. Assessment and propagation of model uncertainty. J.Roy. Stat. Soc. Series B (Methodological), 57(1), 45–97.

    Google Scholar 

  • Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367. DOI 10.1007/s10236-003-0036-9.

    Article  Google Scholar 

  • Krzysztofowicz, R., 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour. Res., 35, 2739–2750.

    Article  Google Scholar 

  • Krzysztofowicz, R. and Kelly, K.S., 2000. Hydrologic uncertainty processor for probabilistic river stage Forecasting. Water Resour. Res., 36(11), 3265–3277.

    Article  Google Scholar 

  • Lindley, D.V., 1968. The choice of variables in multiple regression (with discussion). J.R. Statist. Soc. B, 30, 31–66.

    Google Scholar 

  • Liu, Z., Martina, M.V.L., and Todini, E., 2005. Flood forecasting using a fully distributed model: application of the TOPKAPI model to the Upper Xixian Catchment. Hydrol. Earth Syst. Sci., 9, 347–364.

    Google Scholar 

  • Mantovan, P. and Todini, E., 2006. Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J. Hydrol., 330, 368–381.

    Article  Google Scholar 

  • Mantovan, P., Todini, E., and Martina, M.V.L., 2007. Reply to comment by Keith Beven, Paul Smith and Jim Freer on “Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology”. J. Hydrol., 338, 319–324.

    Article  Google Scholar 

  • Mardia, K.V., Kent, J.T., and Bibby, J.M., 1979. Multivariate Analysis. Probability and Mathematical Statistics. Academic Press, London.

    Google Scholar 

  • Martina, M.L.V., Todini, E., and Libralon, A., 2006. A Bayesian decision approach to rainfall thresholds based flood warning. Hydrol. Earth Syst. Sci., 10, 413–426.

    Google Scholar 

  • Qian, S.S., Stow, C.A., and Borsuk, M.E., 2003. On Monte Carlo methods for Bayesian inference. Ecological Modelling, 159, 269–277.

    Article  CAS  Google Scholar 

  • Raftery, A.E., 1993. Bayesian model selection in structural equation models. In Bollen, K.A. and Long, J.S. (Eds.), Testing Structural Equation Models, pp. 163–180. Newbury Park, CA. Sage.

    Google Scholar 

  • Raftery, A.E., Balabdaoui, F., Gneiting, T., and Polakowski, M., 2003. Using Bayesian model averaging to calibrate forecast ensembles, Tech. Rep., 440, Dep. of Stat., Univ. of Wash., Seattle.

    Google Scholar 

  • Raftery, A.E., Gneiting, T., Balabdaoui, F., and Polakowski, M., 2005. Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 1155– 1174.

    Article  Google Scholar 

  • Raiffa, H. and Schlaifer, R., 1961. Applied Statistical Decision Theory. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Rougier, J., 2007. Probabilistic inference for future climate using an ensemble of climate model evaluations. Climatic Change, 81, 247–264.

    Article  Google Scholar 

  • Todini E., 1999. Using phase-space modeling for inferring forecasting uncertainty in nonlinear stochastic decision schemes. J. Hydroinformatics, 01.2, 75–82.

    Google Scholar 

  • Todini, E., 2007. Hydrological modelling: past, present and future. Hydrol. Earth Syst. Sci., 11(1), 468–482

    Article  Google Scholar 

  • Todini, E., 2008. A model conditional processor to assess predictive uncertainty in flood forecasting, accepted JRBM, in press.

    Google Scholar 

  • Van der Waerden, B.L., 1952. Order tests for two-sample problem and their power I. Indagationes Mathematicae, 14, 453–458.

    Google Scholar 

  • Van der Waerden, B.L., 1953a. Order tests for two-sample problem and their power II. Indagationes Mathematicae, 15, 303–310.

    Google Scholar 

  • Van der Waerden, B.L., 1953b. Order tests for two-sample problem and their power III. Indagationes Mathematicae, 15, 311–316.

    Google Scholar 

  • Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S., 2003. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resour. Res., 39, 1201, doi: 10.1029/2002WR001642.

    Article  Google Scholar 

  • Vrugt, J.A. and Robinson, B.A., 2007. Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43, W01411, doi: 10.1029/2005WR004838.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Todini, E. (2009). Predictive uncertainty assessment in real time flood forecasting. In: Baveye, P.C., Laba, M., Mysiak, J. (eds) Uncertainties in Environmental Modelling and Consequences for Policy Making. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2636-1_9

Download citation

Publish with us

Policies and ethics