Skip to main content
Log in

Cuantificación del ADN y análisis del ciclo celular en un modelo de hepatocarcinogénesis

DNA content and cell cycle analysis in a model of hepatocarcinogenesis

  • Originales
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Resumen

El objetivo de este estudio fue cuantificar el ADN y analizar el ciclo celular en muestras de tejido hepático de ratas a quienes se les indujo un carcinoma hepatocelular bien diferenciado. Se cuantificó y analizó el ADN de las muestras con carcinoma hepático mediante citometría de flujo. Nuestros resultado mostraron la presencia de ADN diploide en todos los grupos durante la hepatocarcinogénesis. El contenido de ADN fue normal, independientemente de las carcterísticas histopatológicas y etapa del cáncer. El análisis de animales incluidos en el modelo de hepatocarcinogénesis mostró un incremento en la cantidad de células hepáticas en proliferación desde el segundo mes de tratamiento. Fue también evidente un importante incremento en la fase G2+M, en el sexto y octavo mes de tratamiento. Aunque hubo variaciones en todas las fases del ciclo celular a lo largo del desarrollo de la hepatocarcinogénesis, fue observada una actividad proliferativa constante (fases S+G2+M) en todo el proceso. Este modelo de hepatocarcinogénesis química inducido en rata puede ser empleado para estudiar alteraciones celulares y moleculares que se presentan desde etapas tempranas hasta la invasión y metástasis.

Abstract

The aim of this study was to quantify DNA content and to analyze cell cycle on samples of liver tissue from rats with an induced well-differentiated hepatocellular carcinoma. For the study we analyzed and quantified DNA by flow cytometry. Our results showed the presence of DNA diploid in all groups during carcinogenesis. DNA content was normal independently of the histological features and the stage of cancer. The analysis of animals included in the hepatocarcinogenesis model showed an increase in the amount of liver cells in proliferation since the se-cond month of treatment. Cell population in S-phase showed an important increase between the second and fourth months. It was also evident an important increase in the G2+M phase in the sixth and eighth months. Although there were variations in all phases of cell cycle throughout hepatocarcinogenesis, it was observed a constant proliferative activity (S+G2+M phases) in all process. This hepatocarcinogenesis model could be used to study the molecular and cellular alterations present since early stages until the invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliografía

  1. Wright TL, Venok AP, Millward-Sadler GH. 1972.Hepatic tumors.En:Millward-Sandler GH, Wright R, Arthur MPJ, editores Wright's liver and biliary disease.London:WB Saunders; 1972.

    Google Scholar 

  2. Lynne WE, Curtis C.Hepatocellular carcinoma.En:Vogelstein B, Kinzler KW, editores.The genetic basis of human cancer.New York:McGraw-Hill; 1998.

    Google Scholar 

  3. Rogler CE, Chisari FV.Cellular and molecular mechanisms of hepatocarcinogenesis.Sem Liver Dis 1992;12:265–71.

    Article  CAS  Google Scholar 

  4. Graeme AM.Hepatocellular carcinoma.Cur Opinion Gastroenterol 1998;14:250–5.

    Article  Google Scholar 

  5. Archibald S, Perkins T, David FS.Molecular biology of cancer: oncogenes, cancer principles and practice of oncology.En:DeVita VT, Hellman S, Rosenberg SA, editores.Philadelphia:Lippincott-Raven Publishers; 1997.

    Google Scholar 

  6. Marx J.How cells cycle toward cancer.Science 1994;263:319–21.

    Article  CAS  PubMed  Google Scholar 

  7. Peifer M.Cancer, catenins, and cuticle pattern: a complex connection.Science 1991;253:665–9.

    Article  Google Scholar 

  8. Hames BD, Glover DM.Cell cycle control.En:Glover HC, editor.New York:IRL Press; 1995.

    Google Scholar 

  9. Osada H.Bioprobes for investigation mammalian cell cycle control.J Antibiotibiotic 1998;51:973–82.

    Article  CAS  Google Scholar 

  10. Hui AM, Makuuchi M, Li X.Cell cycle regulators and human hepatocarcinogenesis.Hepato-Gastroenterology 1998;45:1635–42.

    CAS  PubMed  Google Scholar 

  11. Magi-Galluzzi C, Murphy M, Cangi MG, Loda M.Proliferation, apoptosis and cell regulation in prostatic carcinogenesis.Anal & Quant Cytol & Histol 1998;20:343–50.

    CAS  Google Scholar 

  12. Sgambato A, Flamini G, Cittadini A, Weinstein IB.Abnormalities in cell cycle control in cancer and their clinical implications.Tumori 1998;84:421–33.

    CAS  PubMed  Google Scholar 

  13. Balasubramanian S, Kim KH, Ahmad N, Mukhtar H.Activation of telomerase and its association with G1-phase of the cell cycle during UVB-induced skin tumorigenesis in SKH-1 hairless mouse.Oncogene 1999;18:1297–302.

    Article  CAS  PubMed  Google Scholar 

  14. Nagai H, Pineau P, Tiollais P, Buendia MA, Dejean A.Comprehensive allelotyping of human hepatocellular carcinoma.Oncogene 1997;14:2927–33.

    Article  CAS  PubMed  Google Scholar 

  15. Kuroki T, Fujiwara Y, Tsuchiya E, et al. Accumulation of genetic changes during development and progression of chromo-some arm ip occurs at early stage of of he-patocellular carcinoma: loss of heterozygosity hepatocarcinogenesis.Genes Chromosom Cancer 1995;13:163–87.

    Article  CAS  PubMed  Google Scholar 

  16. Balsells J, Caragol I, Allende E, Díaz I, Charco R, Lázaro RL.DNA ploidy study of resected hepatocellular carcinoma in cirrhotic liver.J Hepatol 1996,25:854–8.

    Article  Google Scholar 

  17. Nagasue N, Kohno H, Chang YC, et al. DNA ploidy pattern in synchronous and metachronous hepatocellular carcinomas.J Hepatol 1992;16:208–25.

    Article  CAS  PubMed  Google Scholar 

  18. Valèrie B, Puig PL, Fouchet P, et al. Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype.Cancer Res 1997;15:1986–90.

    Google Scholar 

  19. Farber E, Sarma DSP.Hepatocarcinogenesis: a dyna Mic Cellular Perspective.Lab Invest 1987;56:4–22.

    CAS  PubMed  Google Scholar 

  20. Lans M, De Gerlachf J, Taper H, Pitot V, Roberfroid M.Phenobarbital as a promotor in the Initation/Selection process of experimental rat hepatocarcinogenesis.Carcinogenesis 1983;4:141–4.

    Article  CAS  PubMed  Google Scholar 

  21. Alvarez-Mendoza A, Reyes-Esparza J, Ruiz-Maldonado R, López-Corella E, Juárez-Herrera NC.Malignant Melanoma in children and congenital melanocytid nevi: DNA content and cell cycle analysis by flow cytometry.Pediatric Dev Pathol 2001;4:73–81.

    Article  CAS  Google Scholar 

  22. Dresler LG, Seamer LC.Controls, standars and histogram interpretation in DNA flow cytometry.Meth Cell Biol 1994;41:241–62.

    Article  Google Scholar 

  23. Zar JH.Biostatistical. Analysis. 2nd edBaltimore:Williams and Wilkins: 1980.

    Google Scholar 

  24. Haydon GH, Hayes PC.Hepatocellular carcinoma.Br J Hosp Med 1995;53:74–8.

    CAS  PubMed  Google Scholar 

  25. Sherman M.Hepatocellular carcinoma, Gastroenterologist 1999;3:55–9.

    Google Scholar 

  26. Fujimoto J, Okamato E, Yamanaka N, Toyosaka A, Mitsunobu M.Flow DNA analysis of hepatocellular garcinoma.Cancer 1991;67:939–44.

    Article  CAS  PubMed  Google Scholar 

  27. Jiri B, Jiri L, Jirina B.Perspective: defects in cell cycle control and cancer.J Pathol 1999;187:95–9.

    Article  Google Scholar 

  28. Shapiro GI, Harper JW.Anticancer drug targets: cell cycle and checkpoint control.J Clinical Invest 1999;104:1645–55.

    Article  CAS  Google Scholar 

  29. Balsells J, Cahagol I, Allende E, Díaz I, Charco R, Lázaro RL.DNA ploidy study of resected hepatocellular carcinoma in cirrhotic liver.J Hepatol 1996;25:854–8.

    Article  Google Scholar 

  30. Nagasue N, Kohno H, Chang YC, et al.,DNA ploidy pattern in synchronous and metachronous hepatocellular carcinomas.J Hepatol 1992;16:208–25.

    Article  CAS  PubMed  Google Scholar 

  31. McEntee GP, Batts KA, Katzmann JA, Llstrup DM, Nagorney DM.Relationship of nuclear DNA content to clinical and pathologic findings in patients with primary hepatic malignancy.Surgery 1992;111:376–9.

    CAS  PubMed  Google Scholar 

  32. Sampatanukul P, Mikuz G, Ishasena S, Vajarapongse K, Feichtinger H.Cytomorphologic and DNA cytometric features of hepatocellular carcinoma in fine needle aspirates.Acta Cytol 1997;41:435–42.

    Article  CAS  PubMed  Google Scholar 

  33. Goldsworthy TL, Hanegan MH, Titot HC.Models of hepatocarcinogenesis in the rat-contrast and comparison.CRC Crit REv Toxicol 1986;17:61–89.

    Article  CAS  Google Scholar 

  34. Conner EA, Lemmer ER, Omori M, Wirth PR, Factor VM, Thorgeirsson SS.Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis.Oncogene 2000;19: 5054–62.

    Article  CAS  PubMed  Google Scholar 

  35. Laconi E.Differential growth: from carcinogenesis to liver repopulation.A J Pathol 2000;156:389–92.

    Article  CAS  Google Scholar 

  36. Nakanuma Y, Terada T, Ueda K, Terasaki S, Nonomura A, Matsui O.Adenomatous hyperplasia of the liver as a precancerous lesion.Liver 1995;15:1–9.

    Article  Google Scholar 

  37. Sakamoto M, Hirohashi S, Shimosato Y.Early stages of multiple hepatocarcinogenesis: madenomatous hyperplasi and early hepatocellular carcinoma.Human Pathol 1991;22:172–82.

    Article  CAS  Google Scholar 

  38. Knudasen ES, Buckmaster C, Chen T, Feramisco JR, Wang JY.Inhibition of DNA synthesis by RB: effects on Gi/S transition and S-phase progression.Genes & Dev 1998;12:2278–92.

    Article  Google Scholar 

  39. Haydon GH, Hayes PC.Hepatocellular carcinoma.Br J Hosp Med 1995;55:74–8.

    Google Scholar 

  40. Sherman M.Hepatocellular carcinoma.Gastroente-rologist 1998;5:55–9.

    Google Scholar 

  41. Rew DA.Significance of aneuploidy.Br J Surgery 1994;81:1416–22.

    Article  CAS  Google Scholar 

  42. Attallah AM, Tabil AA, Salem SF, et al.,DNA ploidy of liver from patients with liver cirrhosis and hepatocelular carcinoma: A flow cytometric analysis.Cancer Lett 1999;142:65–9.

    Article  CAS  PubMed  Google Scholar 

  43. Oriyama T, Yamanaka N, Fujimoto J, Ichikawa N, Okamoto E.Progression of hepatocellular carcinoma as reflected by nuclear DNA ploidy and cellular differentiation.J Hepatol 1998;28:142–9.

    Article  CAS  PubMed  Google Scholar 

  44. Michaelopulus GK.Liver begeneration: molecular mechanisms of growth control.The Faseb J 1990;4:176–87.

    Google Scholar 

  45. Steer CJ.Liver regeneration.The Faseb J 1995;9:1596–400.

    Google Scholar 

  46. Fausto N, Laird AD, Webber EM.Role of growth factors and cytokines in hepatic regeneration.The Faseb J 1995;9:1527–56.

    CAS  PubMed  Google Scholar 

  47. Macdonald G.Hepatocellular carcinoma.Curr Opin Gas-Troenterol 1997;13:257–62.

    Article  Google Scholar 

  48. Nakano M, Saito A, Yamamoto M, Doi M, Takasaki K.Stromal and blood vessel wall invasion in well-differentiated hepatocellular carcinoma.Liver 1997;17:41–6.

    Article  CAS  PubMed  Google Scholar 

  49. Nieto AR, Hernández Pando R, Kershenobich D, Rodríguez FL. Expression of urokinase-type plasminogen activator in experimental model of hepatocarcinoma. Toxicology in Press, 2001.

  50. Hui AM, Makuuchi M, Li X.Cell cycle regulators and human hepatocarcinogenesis.Hepato-gastroenterology 1998;45:1655–42.

    Google Scholar 

  51. Kitumara K, Maekawa H, Shimoda C.Yeast Step, A homolog of Hctl/Cdh 1 and fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase.Mol Biol Cell 1998;9:1065–80.

    Article  Google Scholar 

  52. Jiri B, Jirina B, Jiri L.The Retinoblastoma protein pathway in cell cycle control and cancer.Exp Cell Res 1997;237:1–6.

    Article  Google Scholar 

  53. Fearon ER.Human cancer syndromes: clues to the origin and nature of cancer.Science 1997;278:1045–50.

    Article  Google Scholar 

  54. Kitamura T, Watanabe S, Sato N.Liver regeneration, liver cancer and cyclins, J Gastroenterol Hepatol 1998;13:S96–7.

    CAS  PubMed  Google Scholar 

  55. Van Der Sman J, Thomas NS, Lam EW Modulation of E2F complexes during Go to S phase transition in human primary B-lymphocytes.J Biol Chem 1999;2742: 12009–16.

    Article  Google Scholar 

  56. Dictor M, Ehinger M.Abnormal cell cycle regulation in malignancy.Am J Clin Pathol 1999;112:S40–52.

    CAS  PubMed  Google Scholar 

  57. Sherr CJ, Roberts JM.CDK inhibitors positive and negative regulators of G1 phase progression, Genes Dev 1999;13:1501–12.

    Article  CAS  PubMed  Google Scholar 

  58. Muller H, Helin K.The E2F transcription, factors: key regulators of cell proliferation.Biochim Biophys Acta 2000;1470:M1–12.

    CAS  PubMed  Google Scholar 

  59. Zarrilli R, Pignata S, Apicella A, et al.Cell cycle block at G1-S or G2-M phase correlates with differentiation of Caco-2 cells: effect of constitutive insuline-like growth factor II expression.Gastroenterology 1999;116:1558–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Rodríguez Fragoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fragoso, L.R., Rodríguez, A.N., Cadena, T. et al. Cuantificación del ADN y análisis del ciclo celular en un modelo de hepatocarcinogénesis. Rev Oncol 4, 443–454 (2002). https://doi.org/10.1007/BF02719122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02719122

Palabras clave

Key words

Navigation