Skip to main content
Log in

Investigations of the fundamental quantum noise properties of resonant-cavity light-emitting diodes (rcleds)

Études des Performances du Bruit Quantique Fondamental des Diodes Électroluminescentes à Cavité Résonante

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

We present first results of the investigations of the quantum noise properties of resonant-cavity light-emitting diodes (rcleds). We obtain a quantum noise of up to −0.07dB below the shot noise quantum limit already at moderate pump levels and when being pumped by a quiet current source. This amount of observed sub-shot noise emission is in accordance with the quantum efficiency of the devices. This Sub-Poisson intensity noise ofrcleds together with their narrow beam characteristics make them very attractive for applications in photonics and metrology.

Résumé

Nous présentons les premiers résultats des études du bruit quantique des diodes électroluminescentes à cavité résonante. Nous obtenons un bruit jusqu’à — 0,07 dB au-dessous de la limite quantique du bruit de grenaille même à des niveaux de pompe modérés et avec pompage par une source calme. La valeur observée de ce bruit sous-poissonnien est en accord avec le rendement quantique des diodes électroluminescentes. Finalement, ces résultats démontrent que les diodes électroluminescentes à cavité résonante seront très intéressantes pour des applications en métrologie spectroscopique et en photonique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schubert (E.F.), Wang (Y.-H.), Cho (A.Y.), Tu (L.-W.), Zydzik (G.J.), Resonant cavity light-emitting diode,Appl. Phys. Lett. 60, 921 (1992)

    Article  Google Scholar 

  2. IEEE Sel. Topics Quant. Electron.8 (2002), Special issue on high-efficiency LEDs.

  3. Yamamoto (Y.), Machida (S.), Nilsson (O.), Amplitude squeezing in a pump-noise-suppressed laser oscillator,Phys. Rev. A34, 4025–4042 (1986).

    Article  Google Scholar 

  4. Degen (C.), Vey (J.L.), Elsässer (W.), Schnitzer (P.), Ebeling (K.), Amplitude noise squeezed light from polarisation singlemode VCSEL,Electron. Lett. 34, 353–354 (1998).

    Article  Google Scholar 

  5. Vey (J.-L.), Degen (C.), Auen (K.), Elsässer (W.), Quantum noise and polarization properties of verticalcavity surface-emitting lasers,Phys. Rev. A60, 3284–3295 (1999).

    Article  Google Scholar 

  6. Wiedenmann (D.), Kicherer (M.), Jung (C.), Grabherr (M.), Miller (M.), Jäger (R.), Ebeling (K.J.), Subpoissonian intensity noise from vertical-cavity surface-emitting lasers,Appl. Phys. Lett. 75, 3075–3077 (1999)

    Article  Google Scholar 

  7. Kilper (D.C.), Ross (P.A.), Carlsten (J.L.), Lear (K.L.), Squeezed light generated by a microcavity laser, Phys. Rev. A55, R3323-R3326 (1997).

    Article  Google Scholar 

  8. Hermier (J.-P.), Bramati (A.), Khoury (A.Z.), Josse (V.), Giacobino (E.), Schnitzer (P.), Michalzik, Ebeling (K.J.), Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers,IEEE J. Quantum Electron. QE-37, 87–91 (2001).

    Article  Google Scholar 

  9. Kaiser (J.), Degen (C.), Elsässer (W.), Amplitude-squeezed emission from a transverse single-mode vertical-cavity surface-emitting laser with weakly anticorrelated polarization modes,Opt. Lett. 26, 1720 (2001).

    Article  Google Scholar 

  10. Shinozaki (G.), Abe (J.), Hirano (T.),et al., 3 dB wideband squeezing in photon number fluctuations from a light emitting diode, Jpn.J. Appl. Phys. L36, 6350–6352 (1997).

    Article  Google Scholar 

  11. Abe (J.), Kuga (T.), Hirano (T.), Kobayashi (M.), Yamanishi (M.), Wideband squeezing in photon number fluctuations from a high-speed light-emitting diode,Optics Express 7, 215 (2000).

    Article  Google Scholar 

  12. Wolfl (F.), Schucan (G.M.), Fox (A.M.), Ryan (J.F.), Improved photon-number squeezing in light-emitting diodes, J. Mod.Optics 45, 1147–1153 (1998).

    Article  Google Scholar 

  13. Marin (F.), Bramati (A.), Giacobino (E.), Zhang (T.-Z.), Poizat (J.-P.), Roch (J.-F.), AndGrangier (P.), Squeezing and Intermode Correlations in Laser Diodes,Phys. Rev. Lett. 75, 4606 (1995).

    Article  Google Scholar 

  14. Benisty (H.), De Neve (H.);Weisbuch (C.), Impact of planar microcavity effects on light extraction — Part I: Basic concepts and analytical trends, IEEEJ. Quant. Electron. QE-34, 1612 (1998).

    Article  Google Scholar 

  15. Wirth (R.), Karnutsch (C.), Kugler (S.), Streubel (K.), High Efficiency Resonant-Cavity LEDs Emitting at 650nm, IEEE Photon. Technol Lett.13, 421 (2001).

    Article  Google Scholar 

  16. Bachor (H.-A.), A Guide to Experiments in Quantum Optics, (Wiley-VCH, Weinheim, 1998).

    MATH  Google Scholar 

  17. Joindot (I.), Measurements of relative intensity noise (RIN) in semiconductor-lasers, J. Phys. III2, 1591–1603 (1992).

    Article  Google Scholar 

  18. Joindot (I.), Amplitude or intensity stability in semiconductor-lasers, J. Phys. IV 1 (C7): 745–748 (1991).

    Article  Google Scholar 

  19. Joindot (I.), Relative intensity noise in semiconductor-lasers, Ann. Telecomm.46, 191–204 (1991).

    Google Scholar 

  20. Kim (J.S.), Kan (H.F.), Yamamoto (Y.), Macroscopic Coulomb-blockade effect in a constant-current driven light-emitting diode,Phys. Rev. B52, 2008–2012 (1995).

    Article  Google Scholar 

  21. Sumitomo (H.), Yamanishi (M.), Kadoya (Y.), Theory of photon-number squeezing in a heterojunction LED by the nonlinear backward pump process,Phys. Rev. B65, 165326 (2002).

    Article  Google Scholar 

  22. Gallion (P.), Vey (J.-L.), Jeremie (F.), Classical optical corpuscular theory of semiconductor laser intensity squeezed-light generator, Ann. Telecomm.52, 235–250 (1997).

    Google Scholar 

  23. Vey (J.-L.), Degen (C.), Auen (K.), Elsässer (W.), Quantum noise and polarization properties of verticalcavity surface-emitting lasers,Phys. Rev. A60, 3284–3295 (1999).

    Article  Google Scholar 

  24. Oulton (R.F.), Gray (J.W.), Stravrinou (P.N.), Parry (G.), Insight into planar microcavity emission as a function of numerical aperture,Opt. Comm. 195, 327–338 (2001).

    Article  Google Scholar 

  25. Kappe (Ph.), Kaiser (J.), Elsässer (W), Spatially correlated light emission from a resonant-cavity light-emitting diode, Opt. Lett.28, 49–51 (2003).

    Article  Google Scholar 

  26. Bramati (A.), Jost (V.), Marin (F.), Hermier (J.-P.), Giacobino (E.), Quantum optics and sub-shot noise spectroscopy with squeezed semiconductor lasers,Laser Physics 8, 703–708 (1998).

    Google Scholar 

  27. Marin (F.), Bramati (A.), Jost (V.), Giacobino (E.), Demonstration of high sensitivity spectroscopy with squeezed semiconductor lasers,Opt. Comm. 140, 146–157 (1997).

    Article  Google Scholar 

  28. Jeremie (F.), Chabran (C.), Gallion (P.), Generation of amplitude-squeezed light from 1550 nm distributed feedback semiconductor laser under wavelength selective optical feedback conditions,App. Phys. Lett. 75, 3614–3616 (1999).

    Article  Google Scholar 

  29. Jeremie (F.), Chabran (C.), Gallion (P.), Room-temperature generation of amplitude-squeezed light from 1550-nm distributed-feedback semiconductor lasers,J. Opt. Soc. Am. B16, 460–464 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappe, P., Kaiser, J., Elsässer, W. et al. Investigations of the fundamental quantum noise properties of resonant-cavity light-emitting diodes (rcleds). Ann. Télécommun. 58, 1424–1431 (2003). https://doi.org/10.1007/BF03001738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001738

Key words

Mots clés

Navigation