Skip to main content
Log in

Summary

Nanoparticles are colloidal polymeric particles (size <1000nm) to which drugs are bound by sorption, incorporation, or chemical binding. After intravenous injection they normally distribute into the organs of the reticuloendothelial system (liver, spleen, lungs, bone marrow). However, their body distribution can be altered by coating with surfactants or with physiological components such as serum complement factors. The influence of these coatings on the body distribution and possible mechanisms for the alteration of this distribution are discussed. Differently coated nanoparticles can be used for the targeting of bound drugs to tumors, to the brain, and to inflamed areas in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kreuter, J. (1992) Nanoparticles #x2014; preparation and applications, in Donbrow, M. (ed.) Microcapsules and Nanoparticles in Medicine and Pharmacy, CRS Press, Boca Raton, pp. 125–148.

    Google Scholar 

  2. Kreuter, J. (ed.) (1994) Colloidal Drug Delivery Systems, M. Dekker, New York.

    Google Scholar 

  3. Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., and Speiser, P. (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J. Pharm. Pharmacol.31, 331–332.

    PubMed  CAS  Google Scholar 

  4. Al Khouri Fallough, N., Roblot-Treupel, L., Fessi, H., Devissaguet, J.Ph., and Pusieux, F. (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules, Int. J. Pharm.28, 125–132.

    Article  Google Scholar 

  5. Kreuter, J. (1983) Evaluation of nanoparticles as drug delivery systems II: Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter >1 μm), liposomes, and emulsions. Pharm. Acta Helv.58, 242–250.

    PubMed  CAS  Google Scholar 

  6. Borchard, G., and Kreuter, J. (1993) Interaction of serum components with poly(methyl methacrylate) nanoparticles and the resulting body distribution after intravenous injection in rats, J. Drug Target1, 21–27.

    Article  Google Scholar 

  7. Illum, L., and Davis, S.S. (1984) The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (poloxamer 338), FEBS Letters167, 79–82.

    Article  PubMed  CAS  Google Scholar 

  8. Illum, L., Davis, S.S., Müller, R.H., Mak, E., and West, P. (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockpolymer #x2014; poloxamine 908, Life Sci.40, 367–374.

    Article  PubMed  CAS  Google Scholar 

  9. Tröster, S.D., Müller, U., and Kreuter, J. (1990) Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants, Int. J. Pharm61, 85–100.

    Article  Google Scholar 

  10. Tröster, S.D., and Kreuter, J. (1992) Influence of the surface properties of low contact angle surfactants on the body distribution of14C-poly(methyl methacrylate) nanoparticles, J. Microencapsul.9, 19–28.

    Article  PubMed  Google Scholar 

  11. Borchard, G., Brandriss, S., Kreuter, J., and Margel, S. (1994) Body distribution of75Se-radiolabeled silica nanoaparticles covalently coated with ω-functionalized surfactants after intravenous injection in rats. J. Drug Target.2, 61–77.

    Article  Google Scholar 

  12. Blunk, T., Hochstrasser, D., Sanchez, J.-C., Müller, R.H. (1993) Colloidal carriers for intravenous drug targeting #x2014; plasma absorption patterns on surface-modified latex particles evaluated by 2-D-polyacryamide gel electrophoresis, Electrophoresis14, 1382–1387.

    Article  PubMed  CAS  Google Scholar 

  13. Borchard, G., Audus, K.L., Shi, F., and Kreuter, J. (1994) Uptake of surfactant-coated poly(methyl methacrylate) #x2014; nanoparticles by bovine brain microvessel endothelial cell monolayers, Int. J. Pharm.110, 29–35.

    Article  CAS  Google Scholar 

  14. Alyautdin, R., Gothier, D., Petrov, V., Kharkevich, D., and Kreuter, J. (in press) Analgesic activity of the hexaptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles, Eur. J. Pharm. Biopharm.

  15. Grislain, L., Couvreur, P., Lenaerts, V., Roland, M., Deprez-Decampeneere, D., and Speiser, P. (1983) Pharmacokinetics and distribution of a biodegradable drug carrier, Int. J. Pharm.17, 335–345.

    Article  Google Scholar 

  16. Gipps, E.M., Arshady, R., Kreuter, J., Groscurth, P., and Speiser, P.P. (1986) Distribution of polyhexyl cyanoacrylate nanoparticles in nude mice bearing human osteosarcoma, J. Pharm. Sci.75, 256–258.

    Article  PubMed  CAS  Google Scholar 

  17. Brasseur, F., Couvreur, P., Kante, B., Deckers-Passau, L., Roland, M., Deckers, C., and Speiser, P. (1980) Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: Increased efficiency against an experimental tumor, Eur. J. Cancer16, 1441–1445.

    PubMed  CAS  Google Scholar 

  18. Kattan, J., Droz, J.-P., Couvreur, P., Marino, J.-P., Boutan-Laroze, A., Rougier, P., Brault, P., Vranckx, H., Grognet, J.-M., Morge, X., and Sancho-Garnier, H. (1992) Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles, Invest. New Drugs10, 191–199.

    Article  PubMed  CAS  Google Scholar 

  19. Kreuter, J., and Hartmann, H.R. (1983) Comparative study on the cytostatic effects and the tissue distribution of 5-fluorouracil in a free form and bound to polybutylcyanoacrylate nanoparticles in sarcoma 180-bearing mice, Oncology40, 363–366.

    Article  PubMed  CAS  Google Scholar 

  20. Beck, P., Kreuter, J., Reszka, R., and Fichtner, I. (1993) Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumor models, J. Microencapsul.10, 101–114.

    Article  PubMed  CAS  Google Scholar 

  21. Couvreur, P., Kante, B., Grislain, L., Roland, M., and Speiser, P. (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles, J. Pharm. Sci.71, 790–792.

    Article  PubMed  CAS  Google Scholar 

  22. Couvreur, P., Grislain, L., Lenaerts, V., Brasseur, F., Guiot, P., and Biernacki, A. (1986) Biodegradable polymeric nanoparticles as drug carrier for antitumor agents, in Guiot, P. and Couvreur, P. (eds.) Polymeric Nanoparticles and Microspheres, CRC Press, Boca Raton, pp. 27–93.

    Google Scholar 

  23. Schäfer, V., v. Briesen, H., Andreesen, R., Steffan, A.-M., Royer, C., Tröster, S., Kreuter, J., and Rübsamen-Waigmann, H. (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: A possibility for antiviral drug targeting, Pharm. Res.9, 541–546.

    Article  PubMed  Google Scholar 

  24. Diepold, R., Kreuter, J., Guggenbuhl, P., and Robinson, J.R. (1989) Distribution of poly-hexyl-2-cyano-[3-14C] acrylate nanoparticles in healthy and chronically inflamed rabbit eyes, Int. J. Pharm.54, 149–153.

    Article  CAS  Google Scholar 

  25. Illum, L., Wright, J., and Davis, S.S. (1989) Targeting of microspheres to sites of inflammation, Int. J. Pharm.52, 221–224.

    Article  CAS  Google Scholar 

  26. Alpar, H.O., Field, W.N., Hyde, R., and Lewis, D.A. (1989) The transport of microspheres from the gastrointestinal tract to inflammatory air pouches in the rat, J. Pharm. Pharmacol.41, 194–196.

    PubMed  CAS  Google Scholar 

  27. Kreuter, J. (1991) Peroral administration of nanoparticles, Adv. Drug Deliv. Rev.7, 71–86.

    Article  CAS  Google Scholar 

  28. Diepold, R., Kreuter, J., Himber, J., Gurny, R., Lee, V.H.K., Robinson, J.R., Saettone, M.P., and Schnaudigel, O.E. (1989) Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops and a novel depot formulation (nanoparticles), Gre afe's Arch. Clin. Exp. Ophthalmol.227, 188–193.

    Article  CAS  Google Scholar 

  29. Maincent, P., Thouvenot, P., Amicabile, C., Hoffman, M., Kreuter, J., Couvreur, P., and Devissaguet, J.P. (1992) Lymphatic targetting of polymeric nanoparticles after intraperitoneal administration in rats, Pharm. Res.9, 1534–1539.

    Article  PubMed  CAS  Google Scholar 

  30. Beck, P.H., Kreuter, J., Müller, W.E.G., and Schatton, W. (1994) Improved delivery of avarol with polybutylcyanoacrylate #x2014; nanoparticles, Eur. J. Pharm. Biopharm.40, 134–137.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuter, J. Drug targeting with nanoparticles. Eur. J. Drug Metab. Pharmacokinet. 19, 253–256 (1994). https://doi.org/10.1007/BF03188928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188928

Keywords

Navigation