Skip to main content
Log in

NDRG2 is highly expressed in pancreatic β cells and involved in protection against lipotoxicity

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The N-myc downstream-regulated gene 2 (NDRG2) is involved in cell differentiation and apoptosis, but its function in the pancreas remains to be established. Herein we examine the expression and function of NDRG2 in the endocrine pancreas. NDRG2 immunoreactivity was localized mainly in the cytoplasm of pancreatic β cells. When β-TC3 cells were exposed chronically to high levels of free fatty acid (FFA), cell viability was impaired, and Akt and NDRG2 phosphorylation were reduced. NDRG2 is a potential substrate of protein kinase Akt. Overexpression of constitutively active Akt enhanced NDRG2 phosphorylation and abolished the apoptosis induced by FFA in β-TC3 cells, whereas NDRG2 knock-down attenuated Akt-mediated protection of β cells against fatty acid-triggered apoptosis. Collectively, these data indicate that NDRG2 acts as a key molecule in pancreatic β cells and is involved in the Akt-mediated protection of β cells against lipotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lachat P, Shaw P, Gebhard S, van Belzen N, Chaubert P, Bosman FT (2002) Expression of NDRG1, a differentiation-related gene, in human tissues. Histochem Cell Biol 118:399–408

    Article  CAS  PubMed  Google Scholar 

  2. Ohki T, Hongo S, Nakada N, Maeda A, Takeda M (2002) Inhibition of neurite outgrowth by reduced level of NDRG4 protein in antisense transfected PC12 cells. Brain Res Dev Brain Res 135:55–63

    Article  CAS  PubMed  Google Scholar 

  3. Deng YC, Yao LB, Liu XP, Nie XY, Wang JC, Zhang XG, Su CZ (2001) Exploring a new gene containing ACP like domain in human brain and expression it in E. coli. Prog Bichem Biophys 28:72–76

    CAS  Google Scholar 

  4. Shen L, Zhao ZY, Wang YZ, Ji SP, Liu XW, Che HL, Lin W, Li X, Zhang J, Yao LB (2008) Immunohistochemical detection of Ndrg2 in the mouse nervous system. Neuroreport 19:927–931

    Article  CAS  PubMed  Google Scholar 

  5. Deng Y, Yao L, Chau L, Ng SS, Peng Y, Liu X, Au WS, Wang J, Li F, Ji S, Han H, Nie X, Li Q, Kung HF, Leung SY, Lin MC (2003) N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int J Cancer 106:342–347

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamada M, Ohata H, Honda K, Yamada M (2005) Ndrg2 promotes neurite outgrowth of NGF-differentiated PC12 cells. Neurosci Lett 388:157–162

    CAS  PubMed  Google Scholar 

  7. Mitchelmore C, Buchmann-Moller S, Rask L, West MJ, Troncoso JC, Jensen NA (2004) NDRG2: a novel Alzheimer’s disease associated protein. Neurobiol Dis 16:48–58

    Article  CAS  PubMed  Google Scholar 

  8. Wielpütz MO, Lee IH, Dinudom A, Boulkroun S, Farman N, Cook DI, Korbmacher C, Rauh R (2007) (NDRG2) stimulates amiloride-sensitive Na+ currents in Xenopus laevis oocytes and Fisher rat thyroid cells. J Biol Chem 282:28264–28273

    Article  PubMed  Google Scholar 

  9. Foletta VC, Prior MJ, Stupka N, Carey K, Segal DH, Jones S, Swinton C, Martin S, Cameron-Smith D, Walder KR (2009) NDRG2, a novel regulator myoblast proliferation, is regulated by anabolic and catabolic factors. J Physiol 587:1619–1634

    Article  CAS  PubMed  Google Scholar 

  10. Hu XL, Liu XP, Deng YC, Lin SX, Wu L, Zhang J, Wang LF, Wang XB, Li X, Shen L, Zhang YQ, Yao LB (2006) Expression analysis of the NDRG2 gene in mouse embryonic and adult tissues. Cell Tissue Res 325:67–76

    Article  CAS  PubMed  Google Scholar 

  11. Qader SS, Salehi A, Hakanson R, Lundquist I, Ekelund M (2005) Long-term infusion of nutrients (total parenteral nutrition) suppresses circulating ghrelin in food deprived rats. Regul Pept 131:82–88

    Article  CAS  PubMed  Google Scholar 

  12. Qader SS, Jimenez-Feltstrom J, Ekelund M, Lundquist I, Salehi A (2007) Expression of islet inducible nitric oxide synthase and inhibition of glucose-stimulated insulin release after long-term lipid infusion in the rat is counteracted by PACAP27. Am J Physiol Endocrinol Metab 292:E1447–E1455

    Article  CAS  PubMed  Google Scholar 

  13. Aikin R, Hanley S, Maysinger D, Lipsett M, Castellarin M, Paraskevas S, Rosenberg L (2006) Auticrine insulin action activates Akt and increases survival of isolated human islets. Diabetologia 49:2900–2909

    Article  CAS  PubMed  Google Scholar 

  14. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M (2004) Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47:806–815

    Article  CAS  PubMed  Google Scholar 

  15. Burchfield JG, Lennard AJ, Narasimhan S, Hughes WE, Wasinger VC, Corthals GL, Okuda T, Kondoh H, Biden TJ, Schmitz-Peiffer C (2004) Akt mediates insulin-stimulated phosphorylation of Ndrg2: evidence for cross-talk with protein kinase C theta. J Biol Chem 279:18623–18632

    Article  CAS  PubMed  Google Scholar 

  16. Han Z, Hong L, Han Y, Wu K, Han S, Shen H, Li C, Yao L, Qiao T, Fan D (2007) Phospho Akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax. J Exp Clin Cancer Res 26:261–268

    CAS  PubMed  Google Scholar 

  17. Hu XL, Yao LB, Zhang YQ, Deng YC, Liu XP (2006) Distribution characteristic of NDRG2 expression in human fetal tissues. Sheng Li Xue Bao 58:331–336

    CAS  PubMed  Google Scholar 

  18. Liu X, Hu X, Zhang J, Wang L, Zhang W, Liu X, Li F, Zhang Y, Yao L (2009) Preparation and application of monoclonal antibody against hNDRG2. Appl Biochem Biotechnol 152:306–315

    Article  CAS  PubMed  Google Scholar 

  19. Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H, DiPetrillo TA, Wazer DE, Band V, Band H (2003) ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem 278:13829–13837

    Article  CAS  PubMed  Google Scholar 

  20. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH (2006) Free fatty acid inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 55:2301–2310

    Article  CAS  PubMed  Google Scholar 

  21. Dai FF, Zhang Y, Kang Y, Wang Q, Gaisano HY, Braunewell KH, Chan CB, Wheeler MB (2006) The neuronal Ca2+ sensor protein visinin-like protein-1 is expressed in pancreatic islets and regulates insulin secretion. J Biol Chem 281:21942–21953

    Article  CAS  PubMed  Google Scholar 

  22. O′Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  23. Srinivasan S, Ohsugi M, Liu Z, Fatrai S, Bernal-Mizrachi E, Permutt MA (2005) Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3β in mouse insulinoma cells. Diabetes 54:968–975

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Kouri G, Wollheim CB (2005) ER stress and SREBP-1 activation are implicated in β-cell glucolipotoxicity. J Cell Sci 118:3905–3915

    Article  CAS  PubMed  Google Scholar 

  25. Kharroubi I, Ladrière L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology 145:5087–5096

    Article  CAS  PubMed  Google Scholar 

  26. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  CAS  PubMed  Google Scholar 

  27. Yao L, Zhang J, Liu X (2008) NDRG2: a Myc-repressed gene involved in cancer and cell stress. Acta Biochim Biophys Sin 40:625–635

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Liu N, Yao L, Li F, Zhang J, Deng Y, Liu J, Ji S, Yang A, Han H, Zhang Y, Zhang J, Han W, Liu X (2008) NDRG2 is a new HIF-1 target gene necessary for hypoxia-induced apoptosis in A549 cells. Cell Physiol Biochem 21:239–250

    Article  CAS  PubMed  Google Scholar 

  29. Liu N, Wang L, Li X, Yang Q, Liu X, Zhang J, Zhang J, Wu Y, Ji S, Zhang Y, Yang A, Han H, Yao L (2008) N-Myc downstream-regulated gene 2 is involved in p53-mediated apoptosis. Nucleic Acids Res 36:5335–5349

    Article  CAS  PubMed  Google Scholar 

  30. Poitout V, Robertson RP (2002) Minireview: secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology 143:339–342

    Article  CAS  PubMed  Google Scholar 

  31. Jeffrey KD, Alejandro EU, Luciani DS, Kalynyak TB, Hu X, Li H, Lin Y, Townsend RR, Polonsky KS, Johnson JD (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 105:8452–8457

    Article  CAS  PubMed  Google Scholar 

  32. Pinhas-Hamiel O, Zeitler P (2007) Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet 369:1823–1831

    Article  PubMed  Google Scholar 

  33. Zhang Y, Xu M, Zhang S, Yan L, Yang G, Lu W, Li Y, Cheng H (2007) The role of G protein-couple receptor 40 in lipoapoptosis in mouse beta-cell line NIT-1. J Mol Endocrinol 38:651–661

    Article  CAS  PubMed  Google Scholar 

  34. Masuoka HC, Mott J, Bronk SF, Werneburg NW, Akazawa Y, Kaufmann SH, Gores GJ (2009) Mcl-1 degradation during hepatocyte lipoapoptosis. J Biol Chem 284:30039–30048

    Article  CAS  PubMed  Google Scholar 

  35. Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–336

    Article  CAS  PubMed  Google Scholar 

  36. Zhang N, Kumar M, Xu G, Ju W, Yoon T, Xu E, Huang X, Gaisano H, Peng C, Wang Q (2006) Activin receptor-like kinase 7 induces apoptosis of pancreatic beta cells and beta cell lines. Diabetologia 49:506–518

    Article  CAS  PubMed  Google Scholar 

  37. Choi SC, Yoon SR, Park YP, Song EY, Kim JW, Kim WH, Yang Y, Lim JS, Lee HG (2007) Expression of NDRG2 is related to tumor progression and survival of gastric cancer patients through Fas-mediated cell death. Exp Mol Med 39:705–714

    CAS  PubMed  Google Scholar 

  38. Chen B, Nelson DM, Sadovsky Y (2006) N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury. J Biol Chem 281:2764–2772

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (nos. 30600314, 30670303, 30830054, 30801309 and 30170465). We thank members of our laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Yao.

Additional information

L. Shen, X. Liu and W. Hou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2010_258_MOESM1_ESM.jpg

Supplemental Figure 1. Fluorescence microscopy shows the infection efficiency in β-TC3 cells infected with different MOI of Ad-EGFP for 48 h (JPG 399 kb)

18_2010_258_MOESM2_ESM.jpg

Supplemental Figure 2. Fluorescence microscopy shows the transfection efficiency in β-TC3 cells transfected with fluorescent dye-labeled siRNAs for 12 h (JPG 196 kb)

18_2010_258_MOESM3_ESM.jpg

Supplemental Figure 3. Immunocytochemical staining of apoptotic INS-1, β-TC3 and β-TC6 cells using NDRG2 antibody and Cy3-conjugated secondary antibody shows the localization of NDRG2 (red). DAPI staining (blue) reveals the position and morphology of the cell nuclei. Magnification 400x (JPG 318 kb)

18_2010_258_MOESM4_ESM.jpg

Supplemental Figure 4. Western blotting shows the expression and phosphorylation of Akt in β-TC3 cells chronically exposed to different high palmitic acid concentrations. Cells were incubated with either 1% BSA or the indicated concentration of palmitic acid complexed to 1% BSA for 72 h, and cell lysates separated by SDS-PAGE and subjected to Western blotting prior to detection with antibodies against Akt, phospho-Akt (Ser473) and β-actin. A histogram of the quantitative analysis of Western blot results shows a significant decrease of relative density of phospho-Akt (Ser473) compared to Akt in β-TC3 cells exposed to 0.5 mM palmitic acid complexed to 1% BSA (*P < 0.05 compared to the control) (JPG 216 kb)

18_2010_258_MOESM5_ESM.jpg

Supplemental Figure 5. The half-life of NDRG2 protein in β-TC3 cells treated with cycloheximide (CHX) for 2 h, 4 h, 8 h or 24 h was assessed by Western blotting (JPG 136 kb)

18_2010_258_MOESM6_ESM.jpg

Supplemental Figure 6. The cells were infected with Ad-myristoylated Aktα for 48 h and transfected with 60 nM NDRG2 siRNA or control siRNA and then incubated with 1 mM palmitic acid complexed to 1% BSA for 72 h prior to detection of apoptotic cells by flow cytometry (JPG 306 kb)

18_2010_258_MOESM7_ESM.jpg

Supplemental Figure 7. β-TC3 cells were incubated with 1 mM palmitic acid complexed to 1% BSA for the indicated times and GSIS was measured by ELISA assay (JPG 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Liu, X., Hou, W. et al. NDRG2 is highly expressed in pancreatic β cells and involved in protection against lipotoxicity. Cell. Mol. Life Sci. 67, 1371–1381 (2010). https://doi.org/10.1007/s00018-010-0258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0258-1

Keywords

Navigation