Skip to main content

Advertisement

Log in

The multi-targeted kinase inhibitor sorafenib inhibits human cytomegalovirus replication

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised individuals. Here, non-toxic concentrations of the anti-cancer kinase inhibitor sorafenib were shown to inhibit replication of different HCMV strains (including a ganciclovir-resistant strain) in different cell types. In contrast to established anti-HCMV drugs, sorafenib inhibited HCMV major immediate early promoter activity and HCMV immediate early antigen (IEA) expression. Sorafenib is known to inhibit Raf. Comparison of sorafenib with the MEK inhibitor U0126 suggested that sorafenib inhibits HCMV IEA expression through inhibition of Raf but independently of signaling through the Raf downstream kinase MEK 1/2. In concordance, siRNA-mediated depletion of Raf but not of MEK-reduced IEA expression. In conclusion, sorafenib diminished HCMV replication in clinically relevant concentrations and inhibited HCMV IEA expression, a pathophysiologically relevant event that is not affected by established anti-HCMV drugs. Moreover, we demonstrated for the first time that Raf activation is involved in HCMV IEA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinclair J (2008) Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 41:180–185

    Article  CAS  PubMed  Google Scholar 

  2. Söderberg-Nauclér C (2008) HCMV microinfections in inflammatory diseases and cancer. J Clin Virol 41:218–223

    Article  PubMed  Google Scholar 

  3. Michaelis M, Doerr HW, Cinatl J Jr (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11:1–9

    CAS  PubMed  Google Scholar 

  4. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, Gibran NS, Huang ML, Santo Hayes TK, Corey L, Boeckh M (2008) Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 300:413–422

    Article  CAS  PubMed  Google Scholar 

  5. Boeckh M, Ljungman P (2009) How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood 113:5711–5719

    Article  CAS  PubMed  Google Scholar 

  6. Andrei G, De Clercq E, Snoeck R (2009) Drug targets in cytomegalovirus infection. Infect Disord Drug Targets 9:201–222

    CAS  PubMed  Google Scholar 

  7. Schreiber A, Härter G, Schubert A, Bunjes D, Mertens T, Michel D (2009) Antiviral treatment of cytomegalovirus infection and resistant strains. Expert Opin Pharmacother 10:191–209

    Article  CAS  PubMed  Google Scholar 

  8. Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P, White K, Corey L, Boeckh M (2003) Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood 102:3060–3067

    Article  CAS  PubMed  Google Scholar 

  9. Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J (2003) Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant 9:543–558

    Article  PubMed  Google Scholar 

  10. Mocarski ES Jr, Shenk T, Pass RF (2007) Cytomegalovirus. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Österborg A, Karlsson C, Lundin J, Kimby E, Mellstedt H (2006) Strategies in the management of alemtuzumab-related side effects. Semin Oncol 33:S29–S35

    Article  PubMed  Google Scholar 

  12. Kuo CP, Wu CL, Ho HT, Chen CG, Liu SI, Lu YT (2008) Detection of cytomegalovirus reactivation in cancer patients receiving chemotherapy. Clin Microbiol Infect 14:221–227

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, Sampson JH (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol 10:10–18

    Article  PubMed  Google Scholar 

  14. Lunghi M, Riccomagno P, De Paoli L, Vendramin C, Conconi A, Gaidano G, Rossi D (2009) Monitoring of cytomegalovirus reactivation during induction and nontransplant consolidation of acute leukemia. Am J Hematol 84:697–698

    Article  PubMed  Google Scholar 

  15. Shanley JD, Debs RJ (1989) The folate antagonist, methotrexate, is a potent inhibitor of murine and human cytomegalovirus in vitro. Antiviral Res 11:99–106

    Article  CAS  PubMed  Google Scholar 

  16. Huang ES, Benson JD, Huong SM, Wilson B, van der Horst C (1992) Irreversible inhibition of human cytomegalovirus replication by topoisomerase II inhibitor, etoposide: a new strategy for the treatment of human cytomegalovirus infection. Antiviral Res 17:17–32

    Article  CAS  PubMed  Google Scholar 

  17. Wachsman M, Hamzeh FM, Saito H, Lietman PS (1996) Anticytomegaloviral activity of methotrexate associated with preferential accumulation of drug by cytomegalovirus-infected cells. Antimicrob Agents Chemother 40:433–436

    CAS  PubMed  Google Scholar 

  18. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    Article  CAS  PubMed  Google Scholar 

  19. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10:130–137

    Article  CAS  PubMed  Google Scholar 

  20. Rodems SM, Spector DH (1998) Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J Virol 72:9173–9180

    CAS  PubMed  Google Scholar 

  21. Johnson RA, Ma XL, Yurochko AD, Huang ES (2001) The role of MKK1/2 kinase activity in human cytomegalovirus infection. J Gen Virol 82:493–497

    CAS  PubMed  Google Scholar 

  22. Chen J, Stinski MF (2002) Role of regulatory elements and the MAPK/ERK or p38 MAPK pathways for activation of human cytomegalovirus gene expression. J Virol 76:4873–4885

    Article  CAS  PubMed  Google Scholar 

  23. Prösch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, Krüger DH (1995) Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology 208:197–206

    Article  PubMed  Google Scholar 

  24. Prösch S, Priemer C, Höflich C, Liebenthaf C, Babel N, Krüger DH, Volk HD (2003) Proteasome inhibitors: a novel tool to suppress human cytomegalovirus replication and virus-induced immune modulation. Antiviral Ther 8:555–567

    Google Scholar 

  25. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  CAS  PubMed  Google Scholar 

  26. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  CAS  PubMed  Google Scholar 

  27. Kudchodkar SB, Yu Y, Maguire TG, Alwine JC (2006) Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci USA 103:14182–14187

    Article  CAS  PubMed  Google Scholar 

  28. Marty FM, Bryar J, Browne SK, Schwarzberg T, Ho VT, Bassett IV, Koreth J, Alyea EP, Soiffer RJ, Cutler CS, Antin JH, Baden LR (2007) Sirolimus-based graft-versus-host disease prophylaxis protects against cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation: a cohort analysis. Blood 110:490–500

    Article  CAS  PubMed  Google Scholar 

  29. Bresnahan WA, Boldogh I, Chi P, Thompson EA, Albrecht T (1997) Inhibition of cellular Cdk2 activity blocks human cytomegalovirus replication. Virology 231:239–247

    Article  CAS  PubMed  Google Scholar 

  30. Stein MN, Flaherty KT (2007) CCR drug updates: sorafenib and sunitinib in renal cell carcinoma. Clin Cancer Res 13:3765–3770

    Article  CAS  PubMed  Google Scholar 

  31. Cinatl J Jr, Margraf S, Vogel JU, Scholz M, Cinatl J, Doerr HW (2001) Human cytomegalovirus circumvents NF-kappa B dependence in retinal pigment epithelial cells. J Immunol 167:1900–1908

    CAS  PubMed  Google Scholar 

  32. Schleiss M, Eickhoff J, Auerochs S, Leis M, Abele S, Rechter S, Choi Y, Anderson J, Scott G, Rawlinson W, Michel D, Ensminger S, Klebl B, Stamminger T, Marschall M (2008) Protein kinase inhibitors of the quinazoline class exert anti-cytomegaloviral activity in vitro and in vivo. Antiviral Res 79:49–61

    Article  CAS  PubMed  Google Scholar 

  33. Soroceanu L, Akhavan A, Cobbs CS (2008) Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature 455:391–395

    Article  CAS  PubMed  Google Scholar 

  34. Michaelis M, Köhler N, Reinisch A, Eikel D, Gravemann U, Doerr HW, Nau H, Cinatl J Jr (2004) Increased human cytomegalovirus replication in fibroblasts after treatment with therapeutical plasma concentrations of valproic acid. Biochem Pharmacol 68:531–538

    Article  CAS  PubMed  Google Scholar 

  35. Michaelis M, Suhan T, Reinisch A, Reisenauer A, Fleckenstein C, Eikel D, Gümbel H, Doerr HW, Nau H, Cinatl J Jr (2005) Increased replication of human cytomegalovirus in retinal pigment epithelial cells by valproic acid depends on histone deacetylase inhibition. Invest Ophthalmol Vis Sci 46:3451–3457

    Article  PubMed  Google Scholar 

  36. Michaelis M, Ha TA, Doerr HW, Cinatl J Jr (2008) Valproic acid interferes with antiviral treatment in human cytomegalovirus-infected endothelial cells. Cardiovasc Res 77:544–550

    Article  CAS  PubMed  Google Scholar 

  37. Cinatl J Jr, Blaheta R, Bittoova M, Scholz M, Margraf S, Vogel JU, Cinatl J, Doerr HW (2000) Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol 165:4405–4413

    CAS  PubMed  Google Scholar 

  38. Cinatl J Jr, Michaelis M, Fleckenstein C, Bauer G, Kabicková H, Scholz M, Rabenau HF, Doerr HW (2006) West Nile virus infection induces interferon signalling in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 47:645–651

    Article  PubMed  Google Scholar 

  39. Romanowski MJ, Shenk T (1997) Characterization of the human cytomegalovirus irs1 and trs1 genes: a second immediate-early transcription unit within irs1 whose product antagonizes transcriptional activation. J Virol 71:1485–1496

    CAS  PubMed  Google Scholar 

  40. Scholz M, Doerr HW, Cinatl J (2001) Inhibition of cytomegalovirus immediate early gene expression: a therapeutic option? Antiviral Res 49:129–145

    Article  CAS  PubMed  Google Scholar 

  41. Cinatl J Jr, Kotchetkov R, Scholz M, Cinatl J, Vogel JU, Driever PH, Doerr HW (1999) Human cytomegalovirus infection decreases expression of thrombospondin-1 independent of the tumor suppressor protein p53. Am J Pathol 155:285–292

    Article  CAS  PubMed  Google Scholar 

  42. Luo MH, Fortunato EA (2007) Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol 81:10424–10436

    Article  CAS  PubMed  Google Scholar 

  43. Cinatl J Jr, Vogel JU, Kotchetkov R, Scholz M, Doerr HW (1999) Proinflammatory potential of cytomegalovirus infection. specific inhibition of cytomegalovirus immediate-early expression in combination with antioxidants as a novel treatment strategy? Intervirology 42:419–424

    Article  CAS  PubMed  Google Scholar 

  44. Allen LF, Sebolt-Leopold J, Meyer MB (2003) CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol 30:105–116

    Article  CAS  PubMed  Google Scholar 

  45. Dai Y, Chen S, Pei XY, Almenara JA, Kramer LB, Venditti CA, Dent P, Grant S (2008) Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood 112:2439–2449

    Article  CAS  PubMed  Google Scholar 

  46. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    Article  CAS  PubMed  Google Scholar 

  47. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  CAS  PubMed  Google Scholar 

  48. Travi G, Pergam SA, Xie H, Carpenter P, Kiem HP, Corey L, Boeckh MJ (2009) The effect of imatinib on cytomegalovirus reactivation in hematopoietic cell transplantation. Clin Infect Dis 49:e120–e123

    Article  CAS  PubMed  Google Scholar 

  49. Blanchet B, Billemont B, Cramard J, Benichou AS, Chhun S, Harcouet L, Ropert S, Dauphin A, Goldwasser F, Tod M (2009) Validation of an HPLC-UV method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal 49:1109–1114

    Article  CAS  PubMed  Google Scholar 

  50. Himmelsbach K, Sauter D, Baumert TF, Ludwig L, Blum HE, Hildt E (2009) New aspects of an anti-tumour drug: sorafenib efficiently inhibits HCV replication. Gut 58:1644–1653

    Article  CAS  PubMed  Google Scholar 

  51. Cinatl J Jr, Cinatl J, Vogel JU, Rabenau H, Kornhuber B, Doerr HW (1996) Modulatory effects of human cytomegalovirus infection on malignant properties of cancer cells. Intervirology 39:259–269

    PubMed  Google Scholar 

  52. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350

    CAS  PubMed  Google Scholar 

  53. Prins RM, Cloughesy TF, Liau LM (2008) Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N Engl J Med 359:539–541

    Article  CAS  PubMed  Google Scholar 

  54. Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86

    Article  CAS  PubMed  Google Scholar 

  55. Strååt K, Liu C, Rahbar A, Zhu Q, Liu L, Wolmer-Solberg N, Lou F, Liu Z, Shen J, Jia J, Kyo S, Björkholm M, Sjöberg J, Söderberg-Nauclér C, Xu D (2009) Activation of telomerase by human cytomegalovirus. J Natl Cancer Inst 101:488–497

    Article  PubMed  Google Scholar 

  56. Cinatl J Jr, Cinatl J, Vogel JU, Kotchetkov R, Driever PH, Kabickova H, Kornhuber B, Schwabe D, Doerr HW (1998) Persistent human cytomegalovirus infection induces drug resistance and alteration of programmed cell death in human neuroblastoma cells. Cancer Res 58:367–372

    CAS  PubMed  Google Scholar 

  57. Miller G (2009) Brain cancer. A viral link to glioblastoma? Science 323:30–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the friendly society “Hilfe für krebskranke Kinder Frankfurt e.V.” and its foundation “Frankfurter Stiftung für krebskranke Kinder” for support. Moreover, the authors thank Mrs. Christina Matreux, Mrs. Gesa Meincke, and Mrs. Ines Tschertner for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindrich Cinatl Jr..

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, M., Paulus, C., Löschmann, N. et al. The multi-targeted kinase inhibitor sorafenib inhibits human cytomegalovirus replication. Cell. Mol. Life Sci. 68, 1079–1090 (2011). https://doi.org/10.1007/s00018-010-0510-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0510-8

Keywords

Navigation