Skip to main content
Log in

Non-loose unknots, overtwisted discs, and the contact mapping class group of S3

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We classify Legendrian unknots in overtwisted contact structures on S3. In particular, we show that up to contact isotopy for every pair \({(n,\pm(n-1))}\) with n > 0 there are exactly two oriented non-loose Legendrian unknots in S3 with Thurston–Bennequin invariant n and rotation number \({\pm(n-1)}\) . (Only one overtwisted contact structure on S3 admits a non-loose unknot K and the classical invariants have to be tb(K) = n and \({{\rm rot}(K)=\pm(n-1)}\) for n > 1.)

This can be used to prove two results attributed to Y. Chekanov: The first implies that the contact mapping class group of an overtwisted contact structure on S3 depends on the contact structure. The second result is that the identity component of the contactomorphism group of an overtwisted contact structure on S3 does not always act transitively on the set of boundaries of overtwisted discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker K. L., Onaran S.: Non-looseness of non-loose knots. Alg. & Geom. Topology. 15(2), 1031–1066 (2015)

    Article  MATH  Google Scholar 

  2. D. Bennequin. Entrelacements et équations de Pfaff. Astérisque, 107–108 (1983), 83–161

  3. J. Cerf. Sur les difféomorphismes de la sphère de dimension trois4 = 0), Lect. Notes in Math. 53. Springer (1968).

  4. Colin V.: Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues. C. R. Acad. Sci. Paris Sér. I Math. 324(6), 659–663 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colin V.: Recollement des variétés de contact tendues. Bull Soc. math. France. 127, 43–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Dubrovin, A. Fomenko, and S. Novikov. Modern Geometry - Methods and Applications – Part II. Grad. Texts in Math. 104, Springer (1985).

  7. Dymara K.: Legendrian knots in overtwisted contact structures on S 3. Ann. Global Anal. Geom. 19(3), 293–305 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Dymara. Legendrian knots in overtwisted contact structures, arxiv:math/0410122v2

  9. Eliashberg Y.: Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98, 623–637 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Eliashberg. Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier (1–2)42 (1992), 165–192

  11. Y. Eliashberg and M. Fraser. Classification of topologically trivial Legendrian knots. Geometry, topology, and dynamics 17–51, CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI (1998)

  12. Eliashberg Y., Fraser M.: Topologically trivial Legendrian knots. J. Symplectic Geom. 7(2), 77–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Etnyre J., Ng L.: Problems in low dimensional contact geometry Topology and Geometry of Manifolds. Proc. Sympos. Pure Math. 71, 337–357 (2003)

    Article  MATH  Google Scholar 

  14. J. Etnyre. Legendrian and Transversal Knots, Handbook of Knot Theory (Elsevier B. V., Amsterdam) (2005), 105–185.

  15. Etnyre J.: On contact surgery. Proc. Amer. Math. Soc. 136(9), 3355–3362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Etnyre J.: On knots in overtwisted contact structures. Quantum Topol. 4(3), 229–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eynard-Bontemps H.: On the connectedness of the space of codimension one foliations on a closed 3-manifold. Invent. Math. 204(2), 605–670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Geiges. An introduction to contact topology. Cambridge Studies in Advanced Mathematics, 109. Cambridge University Press, Cambridge (2008).

  19. Geiges H., Onaran S.: Legendrian rational unknots in lens spaces. J. of Symplectic Geom. 13(1), 17–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giroux E.: Convexité en topologie de contact. Comment. Math. Helv. 66(4), 637–677 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Giroux. Topologie de contact en dimension 3 (autour des travaux de Yakov Eliashberg), Séminaire Bourbaki, Vol. 1992/93, Astérisque No. 216 (1993), Exp. No. 760, 3, 7–33.

  22. Giroux E.: Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Invent. Math. 141(3), 615–689 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hatcher A.: On the diffeomorphism group of \({S^1\times S^2}\) . Proc. Amer. Math. Soc. 83(2), 427–430 (1981)

    MathSciNet  Google Scholar 

  24. Hatcher A.: A proof of the Smale conjecture, \({{\rm Diff}(S^3)\simeq{\rm O}(4)}\) . Ann. of Math. (2) 117(3), 553–607 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Hatcher. Algebraic topology. Cambridge University Press (2001).

  26. M. W. Hirsch. Differential topology. Graduate Texts in Math. 33, Springer (1997).

  27. Honda K.: On the classification of tight contact structures. I. Geometry & Topology 4, 309–368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Hopf. Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104 (1931), 637–665

  29. Huang Y.: A proof of the classification theorem of overtwisted contact structures via convex surface theory. J. Symplectic Geom. 11(4), 563–601 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Huang. Bypass attachments and homotopy classes of 2-plane fields in contact topology. J. Symplectic Geom. (3)12 (2014), 599–617

  31. Lisca P., Ozsváth P., Stipsicz A., Szabó Z.: Heegaard Floer invariants of Legendrian knots in contact three-manifolds. J. Eur. Math. Soc. 11(6), 1307–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Lutz. Structures de contact sur les fibrés principaux en cercles de dimension trois. Ann. Inst. Fourier (Grenoble) (3)27 (1977), ix, 1–15

  33. J. W. Milnor. Topology from the differentiable viewpoint. Princeton Landmarks in Math., Princeton University Press, Princeton, NJ (1997).

  34. R. Roussarie. Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie. I.H.E.S. Publ. Math. 423 (1973), 101–142

  35. Vogel T.: On the uniqueness of the contact structure approximating a foliation. Geometry & Topology 20(5), 2439–2573 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vogel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, T. Non-loose unknots, overtwisted discs, and the contact mapping class group of S3. Geom. Funct. Anal. 28, 228–288 (2018). https://doi.org/10.1007/s00039-018-0439-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0439-x

Mathematics Subject Classification

Navigation