Skip to main content
Log in

Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Barley yellow dwarf virus (BYDV) is an economically important pathogen of barley, which may become even more important due to global warming. In barley, several loci conferring tolerance to BYDV-PAV-ASL-1 are known, e.g. Ryd2, Ryd3 and a quantitative trait locus (QTL) on chromosome 2H. The aim of the present study was to get information whether the level of tolerance against this isolate of BYDV in barley can be improved by combining these loci. Therefore, a winter and a spring barley population of doubled haploid (DH) lines were genotyped by molecular markers for the presence of the susceptibility or the resistance encoding allele at respective loci (Ryd2, Ryd3, QTL on chromosome 2H) and were tested for their level of BYDV-tolerance after inoculation with viruliferous (BYDV-PAV-ASL-1) aphids in field trials. In DH-lines carrying the combination Ryd2 and Ryd3, a significant reduction of the virus titre was detected as compared to lines carrying only one of these genes. Furthermore, spring barley DH-lines with this allele combination also showed a significantly higher relative grain yield as compared to lines carrying only Ryd2 or Ryd3. The QTL on chromosome 2H had only a small effect on the level of tolerance in those lines carrying only Ryd2, or Ryd3 or a combination of both, but the effect in comparison to lines carrying no tolerance allele was significant. Overall, these results show that the combination of Ryd2 and Ryd3 leads to quantitative resistance against BYDV-PAV instead of tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Baltenberger DE, Ohm HW, Foster JE (1987) Reactions of oat, barley, and wheat to infection with Barley yellow dwarf virus isolates. Crop Sci 27:195–198

    Article  Google Scholar 

  • Banks PM, Waterhouse PM, Larkin PJ (1992) Pathogenicity of 3 RPV isolates of Barley yellow dwarf virus on barley, wheat and wheat alien addition lines. Ann Appl Biol 121:305–314

    Article  Google Scholar 

  • Barker H, und Harrison BD (1986) Restricted distribution of potato leafroll virus antigen in resistant potato genotypes and its effect on transmission of the virus by aphids. Ann Appl Biol 109:595–604

    Article  Google Scholar 

  • Brown AR, Johnson JW, Rothrock CS, Bruckner PL (1988) Registration of Venus barley. Crop Sci 28:718–719

    Article  Google Scholar 

  • Catherall PL, Wilkins PW (1977) Barley yellow dwarf virus in relation to breeding and assessment of herbage grasses for yield and uniformity. Euphytica 26:385–391

    Article  Google Scholar 

  • Catherall PL, Jones AT, Hayes JD (1970) Inheritance and effectiveness of genes in barley that condition tolerance to barley yellow dwarf virus. Ann Appl Biol 65:153–161

    Article  Google Scholar 

  • Catherall PL, Hayes JD, Boulton RE (1977) Breeding cereals resistant to virus diseases in Britain. Ann Phytopathol 9:241–244

    Google Scholar 

  • Chalhoub BA, Sarrafi A, Beuve MA, Lapierre HD (1994) Differential interactions between PAV-like isolates of Barley yellow dwarf virus and barley (Hordeum vulgare L.) genotypes. J Phytopathol 142:189–198

    Article  Google Scholar 

  • Chalhoub BA, Sarrafi A, Lapierre HD (1995) Partial resistance in the barley (Hordeum vulgare L) cultivar ‘Chikurin-Ibaraki-1’ to two PAV-like isolates of Barley yellow-dwarf virus: allelic variability at the Yd2 gene locus. Plant Breed 114:303–307

    Article  Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. J General Virol 34:475–483

    Article  CAS  Google Scholar 

  • Collins NC, Paltridge NG, Ford CM, Symons RH (1996) The Yd2 gene for Barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theor Appl Genet 92:858–864

    Article  CAS  Google Scholar 

  • Cooper JI, Jones AT (1983) Responses of plants to viruses—proposals for the use of terms. Phytopathology 73:127–128

    Article  Google Scholar 

  • Domier LL (2008) Barley yellow dwarf virus. In: Mahy BWJ, van Regenmortal MHV (eds) Encyclopedia of virology. Elsevier, Oxford, pp 279–286

    Chapter  Google Scholar 

  • Domier LL, D’Arcy CJ (2008) Luteoviruses. In: Mahy BWJ, van Regenmortal MHV (eds) Encyclopedia of virology. Elsevier, Oxford, pp 231–238

    Chapter  Google Scholar 

  • Ford CM, Paltridge NG, Rathjen JP, Moritz RL, Simpson RJ, Symons RH (1998) Rapid and informative assays for Yd2, the Barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Mol Breed 4:23–31

    Article  CAS  Google Scholar 

  • Gill CC, Chong J (1979) Cytopathological evidence for the division of Barley yellow dwarf virus isolates into two subgroups. Virology 95:59–69

    Article  PubMed  CAS  Google Scholar 

  • Habekuss A, Lehmann CO (1991) Investigations of the Gatersleben winter barley collection for resistance to Barley yellow dwarf virus. In: Barley Genetics VI: Proceedings of 6th International Barley Genetic Symposium, Munksgaard Publ, Copenhagen, pp 619–621

  • Habekuß A, Riedel C, Schliephake E, Ordon F (2009) Breeding for resistance to insect-transmitted viruses in barley—an emerging challenge due to global warming. J Cultiv Plants 61:53–61

    Google Scholar 

  • Harrington R (2003) Turning up the heat on pests and diseases: a case study for Barley yellow dwarf virus. In: Proceedings of British Crop Protection Council International Congress: Crop Science and Technology. Vol 2, Glasgow, UK, pp 1195–1200

  • Harrington R, Clark SJ, Welham SJ, Varrier PJ, Denholm CH, Hulle M, Maurice D, Rounsevell MD, Cocu N (2007) Environmental change and the phenology of European aphids. Global Change Biol 13:1550–1564

    Article  Google Scholar 

  • Herrera GM, Plumb RT (1991) The effects of MAV-, PAV and RPV-like isolates of BYDV on spring and winter barley cultivars. Acta Phytopathol Entomol Hung 26:41–45

    Google Scholar 

  • Jahier J, Chain F, Barloy D, Tanguy AM, Lemoine J, Riault G, Margale E, Trottet M, Jacquot E (2009) Effect of combining two genes for partial resistance to Barley yellow dwarf virus-PAV (BYDV-PAV) derived from Thinopyrum intermedium in wheat. Plant Pathol 58:807–814

    Article  Google Scholar 

  • Jones RAC (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130

    Article  PubMed  CAS  Google Scholar 

  • Kraakman ATW, Martinez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17(1):41–58

    Article  CAS  Google Scholar 

  • Larkin PJ, Young MJ, Gerlach WL, Waterhouse PM (1991) The Yd2 resistance to Barley yellow dwarf virus is effective in barley plants but not in their leaf protoplasts. Ann Appl Biol 118:115–125

    Article  Google Scholar 

  • Lister RM, Ranieri R (1995) Distribution and economic importance of Barley yellow dwarf. In: D’Arcy CJ, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 29–53

    Google Scholar 

  • Neuhäuser M, Jöckel K-H (2006) A bootstrap test for the analysis of microarray experiments with a very small number of replications. Appl Bioinforma 5:173–179

    Article  Google Scholar 

  • Niks RE, Habekuss A, Bekele B, Ordon F (2004) A novel major gene on chromosome 6H for resistance of barley against the Barley yellow dwarf virus. Theor Appl Genet 109:1536–1543

    Article  PubMed  CAS  Google Scholar 

  • Parry AL, Habgood RM (1986) Field assessment of the effectiveness of a Barley yellow dwarf virus resistance gene following its transference from spring to winter barley. Ann Appl Biol 108:395–401

    Article  Google Scholar 

  • Ranieri R, Lister RM, Burnett PA (1993) Relationship between Barley yellow dwarf virus titre and symptom expression in barley. Crop Sci 33:968–973

    Article  Google Scholar 

  • Rochow WF (1969) Biological properties of 4 isolates of Barley yellow dwarf virus. Phytopathology 59:1580–1589

    PubMed  CAS  Google Scholar 

  • Rochow WF, Duffus JE (1981) Luteoviruses and Yellows diseases. In: Kurstak E (ed) Handbook of plant virus infections and comparative diagnosis. Elsevier/North-Holland, Amsterdam, pp 147–170

    Google Scholar 

  • Roos J, Hopkins R, Kvarnheden A, Dixelius C (2011) The impact of global warming on plant diseases and insect vectors in Sweden. Eur J Plant Pathol 129:9–19

    Article  Google Scholar 

  • Sayed H, Kumari S, Baum M, Ghulam W, Grando S, Makkouk K (2006) Marker-assisted selection for Barley yellow dwarf virus resistance genes Yd2 and Yd3 in barley. In: Ninth Arab congress of plant protection, 19–23 November 2006, Damascus, Syria. p E-103

  • Schaller CW (1984) The genetics of resistance to Barley yellow dwarf virus in barley. Burnett PA (ed) Barley yellow dwarf. In: Proceedings of a workshop. CIMMYT, Mexico DF, p 93

  • Schaller CW, Chim CI (1969a) Registration of Atlas 68 barley. Crop Sci 9:521

    Google Scholar 

  • Schaller CW, Chim CI (1969b) Registration of CM 67 barley. Crop Sci 9:521

    Google Scholar 

  • Schaller CW, Qualset CO, Rutger JN (1964) Inheritance and linkage of the Yd2 gene conditioning resistance to the Barley yellow dwarf disease in barley. Crop Sci 4:544–548

    Article  Google Scholar 

  • Schaller CW, Prato JD, Chim CI (1973) Registration of Sutter barley. Crop Sci 13:285

    Article  Google Scholar 

  • Scheurer KS, Huth W, Friedt W, Ordon F (2000) First results on BYDV-tolerance in barley estimated in pot experiments. J Plant Dis Prot 107:427–432

    Google Scholar 

  • Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor Appl Genet 103:1074–1083

    Article  CAS  Google Scholar 

  • Scholz M, Ruge-Wehling B, Habekuss A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the Barley yellow dwarf virus. Theor Appl Genet 119:837–849

    Article  PubMed  CAS  Google Scholar 

  • Sip V, Sirlova L, Chrpova J (2006) Screening for Barley yellow dwarf virus-resistant barley genotypes by assessment of virus content in inoculated seedlings. J Phytopathol 154:336–342

    Article  CAS  Google Scholar 

  • Skaria M, Lister RM, Foster JE, Shaner G (1985) Virus content as an index of symptomatic resistance to Barley yellow dwarf virus in cereals. Phytopathology 75:212–216

    Article  Google Scholar 

  • Starling TM, Roane CW, Camper HM (1987) Registration of Wysor barley. Crop Sci 27:1306–1307

    Article  Google Scholar 

  • Starling TM, Griffey CA, Price AM, Roane CW, Sisson WL, Brann DE (1994) Registration of Nomini barley. Crop Sci 34:300

    Article  Google Scholar 

  • Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356

    Article  CAS  Google Scholar 

  • Suneson CA (1955) Breeding for resistance to yellow dwarf virus in barley. Agron J 47:283

    Article  Google Scholar 

  • Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589

    Article  CAS  Google Scholar 

  • Vertigan WA (1991) Register of Australian winter cereal cultivars Hordeum vulgare (Barley) cv. Franklin. Aust J Exp Agric 31:863

    Article  Google Scholar 

  • Weber I, Meyer U, Haase A, Kegler H (1990) Untersuchungen zum Einfluß von Pflanzenalter und erblicher Resistenz auf die Viruskonzentration als Merkmal quantitaiver Resistenz am Modell Gurke–Gurkenmosai-Virus (cucumber mosaic virus). Arch Phytopathol Pflanzenschutz 26:225–235

    Article  Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55

    Article  CAS  Google Scholar 

  • Werner K, Friedt W, Ordon F (2007) Localisation and combination of resistance genes against soil-borne viruses of barley (BaMMV, BaYMV) using doubled haploids and molecular markers. Euphytica 158:323–329

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Federal Ministry for Nutrition, Agriculture and Consumer Protection (BMELV) and the Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V (GFP) for financial support (PGI-06.01-28-1-41.002-06). For carrying out field trials we thank Dr. Claus Einfeldt from Saatzucht Dr. J. Ackermann & Co, Irlbach, Dr. Viktor Korzun from KWS-Lochow GmbH, Dr. Eberhard Laubach from Nordsaat Saatzuchtgesellschaft mbH and Dr. Jens Weyen from Saaten-Union Biotec GmbH for producing the DH-lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Ordon.

Additional information

Communicated by P. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, C., Habekuß, A., Schliephake, E. et al. Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123, 69–76 (2011). https://doi.org/10.1007/s00122-011-1567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1567-y

Keywords

Navigation