Skip to main content
Log in

Is Hyalella azteca a Suitable Model Leaf-Shredding Benthic Crustacean for Testing the Toxicity of Sediment-Associated Metals in Europe?

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The leaf-shredding crustacean Hyalella azteca, which is indigenous to Northern and Central America, is used to assess environmental risks associated with (metal-)contaminated sediments and to propose sediment quality standards also in Europe. Yet, it is unknown if H. azteca is protective for European crustacean shredders. We thus compared the sensitivity of H. azteca with that of the European species Asellus aquaticus and Gammarus fossarum towards copper- and cadmium-contaminated sediments (prepared according to OECD 218) under laboratory conditions employing mortality and leaf consumption as endpoints. H. azteca either reacted approximately fourfold more sensitive than the most tolerant tested species (as for cadmium) or its sensitivity was only 1.6 times lower than the highest sensitivity determined (as for copper), which should be covered by safety factors applied during risk assessments. Therefore, the results for the sediment type and the two heavy metals tested during the present study in combination with the existence of standardized testing protocols, their ease of culture, and short generation time, suggest H. azteca as suitable crustacean model shredder for assessing the toxicity of sediment-associated metals in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baird DJ et al (2007) In situ-based effects measures: determining the ecological relevance of measured responses. Integr Environ Assess Manag 3:259–267

    Article  Google Scholar 

  • Besser JM et al. (2018) Characterizing toxicity of metal-contaminated sediments from the Upper Columbia River, Washington USA, to benthic invertebrates. Environ Toxicol Chem 37(12):3102–3114

    Article  CAS  Google Scholar 

  • Bodar CW, Pronk ME, Sijm DT (2005) The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Assess Manag 1:301–319

    Article  CAS  Google Scholar 

  • Borgmann U (1996) Systematic analysis of aqueous ion requirements of Hyalella azteca: a standard artificial medium including the essential bromide ion. Arch Environ Contam Toxicol 30:356–363

    Article  CAS  Google Scholar 

  • Borgmann U, Couillard Y, Doyle P, Dixon DG (2005) Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environ Toxicol Chem 24:641–652

    Article  CAS  Google Scholar 

  • Bundschuh M, McKie BG (2016) An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshw Biol 61:2063–2074

    Article  CAS  Google Scholar 

  • Chapman PM, Hollert H (2006) Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? J Soils Sediments 6:4–8

    Article  Google Scholar 

  • Chapman PM, Wang F, Janssen C, Persoone G, Allen HE Can (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. J Fish Aquat Sci 55:2221–2243

    Article  CAS  Google Scholar 

  • Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8:1129–1137

    Article  Google Scholar 

  • De Cooman W, Blaise C, Janssen C, Detemmerman L, Elst R, Persoone G (2015) History and sensitivity comparison of two standard whole-sediment toxicity tests with crustaceans: the amphipod Hyalella azteca and the ostracod Heterocypris incongruens microbiotest. Knowl Manag Aquat Ecosyst 416:15

    Article  Google Scholar 

  • Donnachie RL, Johnson AC, Moeckel C, Pereira MG, Sumpter JP (2014) Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Environ Pollut 194:17–23

    Article  CAS  Google Scholar 

  • Fernández D, Voss K, Bundschuh M, Zubrod JP, Schäfer RB (2015) Effects of fungicides on decomposer communities and litter decomposition in vineyard streams. Sci Total Environ 533:40–48

    Article  CAS  Google Scholar 

  • Ferreira V, Koricheva J, Duarte S, Niyogi DK, Guerold F (2016) Effects of anthropogenic heavy metal contamination on litter decomposition in streams—a meta-analysis. Environ Pollut 210:261–270

    Article  CAS  Google Scholar 

  • Findley DF (2006) Model selection: Akaike’s Information Criterion. In: Kotz S, Read CB, Balakrishnan N, Vidakovic B, Johnson NL (eds) Encyclopedia of statistical sciences. Wiley, New York

    Google Scholar 

  • Franke U (1977) Experimentelle Untersuchungen zur Respiration von Gammarus fossarum in Abhängigkeit von Temperatur. Sauerstoffkonzentration Wasserbewegung. Arch Hydrobiol Suppl 48:369–411

    Google Scholar 

  • Gerbersdorf SU, Hollert H, Brinkmann M, Wieprecht S, Schüttrumpf H, Manz W (2011) Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a “triad plus x” approach. J Soils Sediments 11:1099–1114

    Article  CAS  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Glazier DS (2000) Is fatter fitter? Body storage and reproduction in ten populations of the freshwater amphipod Gammarus minus. Oecologia 122:335–345

    Article  CAS  Google Scholar 

  • Goodyear K, McNeill S (1999) Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ 229:1–19

    Article  CAS  Google Scholar 

  • Hilbeck A et al (2017) Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems. Integr Environ Assess Manag 13:974–979

    Article  Google Scholar 

  • Kühr S, Schneider S, Meisterjahn B, Schlich K, Hund-Rinke K, Schlechtriem C (2018) Silver nanoparticles in sewage treatment plant effluents: chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca. Environ Sci Eur 30:7

    Article  CAS  Google Scholar 

  • Landrigan PJ et al (2017) The Lancet Commission on pollution and health. Lancet 391(10119):462–512

    Article  Google Scholar 

  • MacNeil C, Dick JTA, Elwood RW (1999) The dynamics of predation on Gammarus spp. (Crustacea: Amphipoda). Biol Rev 74:375–395

    Article  Google Scholar 

  • Maltby L (1994) Stress, shredder and streams: using Gammarus energetics to assess water quality. In: Sutcliffe DW (ed) Water quality and stress indicators in marine and freshwater systems: linking levels of organisation. Freshwater Biological Association, Ambleside, pp 98–110

    Google Scholar 

  • Maltby L, Clayton SA, Wood RM, McLoughlin N (2002) Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness and relevance. Environ Toxicol Chem 21:361–368

    Article  CAS  Google Scholar 

  • McCahon CP, Pascoe D (1988) Use of Gammarus pulex (L.) in safety evaluation tests: culture and selection of a sensitive life stage. Ecotoxicol Environ Saf 15:245–252

    Article  CAS  Google Scholar 

  • Milani D, Reynoldson TB, Borgmann U, Kolasa J (2003) The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environ Toxicol Chem 22:845–854

    Article  CAS  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human Well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Naylor C, Pindar L, Calow P (1990) Inter- and intraspecific variation in sensitivity to toxins; the effects of acidity and zinc on the freshwater crustaceans Asellus aquaticus (L.) and Gammarus pulex (L.). Water Res 24:757–762

    Article  CAS  Google Scholar 

  • OECD (2004) OECD Guidelines for the testing of chemicals 218: sediment-water chironomid toxicity test using spiked sediment. Guideline for testing of chemicals. OCED, Paris

    Google Scholar 

  • Plaistow SJ, Bollache L, Cézilly F (2003) Energetically costly precopulatory mate guarding in the amphipod Gammarus pulex: causes and consequences. Anim Behav 65:683–691

    Article  Google Scholar 

  • Redmond JR (1955) The respiratory function of hemocyanin in crustacea. J Cell Comp Physiol 46:209–247

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22

    Article  Google Scholar 

  • Roman YE, De Schamphelaere KA, Nguyen LT, Janssen CR (2007) Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment. Sci Total Environ 387:128–140

    Article  CAS  Google Scholar 

  • Rosenfeldt RR et al (2015) Does the presence of titanium dioxide nanoparticles reduce copper toxicity? A factorial approach with the benthic amphipod Gammarus fossarum. Aquat Toxicol 165:154–159

    Article  CAS  Google Scholar 

  • Sheahan D, Fisher T (2012) Review and comparison of available testing approaches and protocols for testing effects of chemicals on sediment-dwelling organisms with potential applicability to pesticides. EFSA Support Publ 9:337E

    Google Scholar 

  • Shuhaimi-Othman M, Pascoe D (2007) Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca. Ecotoxicol Environ Saf 66:29–35

    Article  CAS  Google Scholar 

  • Simpson SL, Angel BM, Jolley DF (2004) Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. Chemosphere 54:597–609

    Article  CAS  Google Scholar 

  • Soares H, Boaventura R, Machado A, Da Silva JE (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323

    Article  CAS  Google Scholar 

  • Van Hattum B, De Voogt P, Van den Bosch L, Van Straalen N, Joosse E, Govers H (1989) Bioaccumulation of cadmium by the freshwater isopod Asellus aquaticus (L.) from aqueous and dietary sources. Environ Pollut 62:129–151

    Article  Google Scholar 

  • van der Meer TV, de Baat ML, Verdonschot PF, Kraak MH (2017) Benthic invertebrate bioturbation activity determines species specific sensitivity to sediment contamination. Front Environ Sci 5:83

    Article  Google Scholar 

  • Water Framework Directive - United Kingdom Technical Advisory Group (WFD-UKTAG) (2012) Proposed EQS for water framework directive Annex VIII substances: zinc (For consultation)

  • Wheeler MW, Park RM, Bailer AJ (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem 25:1441–1444

    Article  CAS  Google Scholar 

  • Whitehurst IT (1991) The GammarusAsellus ratio as an index of organic pollution. Water Res 25:333–340

    Article  CAS  Google Scholar 

  • Witt JD, Hebert PD (2000) Cryptic species diversity and evolution in the amphipod genus Hyalella within central glaciated North America: a molecular phylogenetic approach. Can J Fish Aquat Sci 57:687–698

    Article  CAS  Google Scholar 

  • Wood CM, Farrell AP, Brauner CJ (eds) (2012) Fish physiology: homeostasis and toxicology of essential metals, vol 31A. Elsevier Inc.

  • Zubrod JP, Baudy P, Schulz R, Bundschuh M (2014) Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum. Aquat Toxicol 150:133–143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Baudy, T. Bürgi, M. Konschak, and a number of students for their help in the laboratory and M. Weil (ECT Oekotoxikologie GmbH) for providing the H. azteca to start our in-house culture. Reviewers and editor of this paper are acknowledged for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jochen P. Zubrod or Mirco Bundschuh.

Ethics declarations

Conflict of interest

Some of the authors (R.R.R. and R.S.) are managing directors of small environmental consultancies or are now employed at a consultancy (D.E. and H.P.). The authors, however, do not feel a conflict of interest as a consequence of this situation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubrod, J.P., Englert, D., Feckler, A. et al. Is Hyalella azteca a Suitable Model Leaf-Shredding Benthic Crustacean for Testing the Toxicity of Sediment-Associated Metals in Europe?. Bull Environ Contam Toxicol 102, 303–309 (2019). https://doi.org/10.1007/s00128-019-02557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02557-6

Keywords

Navigation