Skip to main content
Log in

Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Knowledge of the position and motion of points on the seafloor can be critically important in both fundamental research (for example, global geodesy and plate tectonics) and for more practical applications such as seismic risk evaluation, off-shore construction and pipeline monitoring. In the Vanuatu subduction zone, for example, measuring deformation underwater could provide valuable information for modeling deformation and understanding the seismic cycle. We report a shallow water experiment in Vanuatu to measure the relative and absolute depth of seafloor points. The experiment differs from previous efforts mainly in that it uses the height of the sea surface determined by kinematic GPS, allowing us to locate the points in a global reference frame. The ITRF2005 ellipsoidal height of a seafloor benchmark was determined with a 1-sigma uncertainty of 0.7–2.1 cm. The estimated ellipsoidal height differs only by a few tenths of a centimeter between measurements made in 2004 and another set made in 2006. These results are encouraging and open new perspectives for vertical underwater deformation monitoring in shallow water areas. Sea-surface GPS measurements can also help to reduce the uncertainty in depth difference determination for relative measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112. doi:10.1029/2007JB004949

  • Altamimi Z, Sillard P, Boucher C (2004) CATREF software: combination and analysis of terrestrial reference frames lareg technical notes SP08. Institut Geographique National

  • Ballu V, Ammann J, Pot O, et~al (2008) A seafloor experiment to monitor vertical deformation at the Lucky Strike volcano, Mid-Altantic Ridge. J Geod (in press). doi:10.1007/s00190-008-0248-3

  • Bergeot N, Bouin MN, Diament M, Pelletier B, Régnier M, Calmant S, Ballu V (2009) Horizontal and vertical interseismic velocity fields in the Vanuatu subduction zone from GPS measurements: evidence for a central Vanuatu locked zone. J Geophys Res 114. doi:10.1029/2007JB005249

  • Bouin MN, Ballu V, Calmant S, Pelletier B, Ammann J, Bore J-M, Folcher E (2009) Methodology of kinematic GPS experiment for local sea surface mapping, Vanuatu. J Geod (in press). doi:10.1007/s00190-009-0338-x

  • Chadwell CD, Hildebrand JA, Spiess FN, L MJ, Normark WR, Reiss CA (1999) No spreading across the southern Juan de Fuca ridge axial cleft during 1994–1996. Geophys Res Lett 26: 2525–2528

    Article  Google Scholar 

  • Chadwell CD, Spiess FN (2008) Plate motion at the ridge-transform boundary of the south Cleft Segment of the Juan de Fuca Ridge from GPS-Acoustic data. J Geophys Res 113: B04415. doi:10.1029/2007JB004936

    Article  Google Scholar 

  • Chadwick WW Jr, Embley RW, Milburn HB, Meinig C, Stapp M (1999) Evidence for deformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca Ridge, from acoustic extensometer measurements. Geophys Res Lett 26: 3441–3444

    Article  Google Scholar 

  • Chadwick WW Jr, Nooner SL, Zumberge MA, Embley R, Fox CG (2006) Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors. J Volc Geoth Res 150: 313–327

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Grand S (2007) GRACE detects coseismic and postseismic deformation from the Sumatra–Andaman earthquake. Geophys Res Lett 34. doi:10.1029/2007GL030356

  • de Viron O, Panet I, Mikhailov V, Van Camp M, Diament M (2008) Retrieving earthquake signature in GRACE gravity solutions. Geophys J Int 174 doi:10.111/j.1365-264X.2008.03807.x

  • Doubre C, Peltzer G (2007) Fluid-controlled faulting process in the Asal rift, Djibouti, from 8 year of radar interferometry observations. Geology 35: 69–72

    Article  Google Scholar 

  • Dragert H, Wang K, James TS (2001) A silent slip event on the deeper Cascadia subduction interface. Science 292: 1525–1528

    Article  Google Scholar 

  • Fox C (1993) Five years of ground deformation monitoring on axial seamount using a bottom pressure recorder. Geophys Res Lett 20: 1859–1862

    Article  Google Scholar 

  • Fox C (1999) In situ ground deformation measurements from the summit of Axial Volcano during the 1998 volcanic episode. Geophys Res Lett 26: 3437–3440

    Article  Google Scholar 

  • Fox CG (1990) Evidence of active ground deformation on the Mid-Ocean Ridge : axial Seamount, Juan de Fuca Ridge, April–June 1988. J Geophys Res 95: 12813–12822

    Article  Google Scholar 

  • Fujimoto H, Koizumi K, Osada Y, Kanazawa T (1998) Development of instruments for seafloor geodesy. Earth Planets Space 50: 905–911

    Google Scholar 

  • Fujita M, Ishikawa T, Mochizuki M et al (2006) GPS/Acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planets Space 58: 265–275

    Google Scholar 

  • Gagnon K, Chadwell CD, Norabuena E (2005) Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature 434: 205–208

    Article  Google Scholar 

  • Han S-C, Shum CK, Bevis M, Ji C, Kuo C-Y (2006) Crustal dilatation observed by GRACE after the 2004. Sumatra-Andaman Earthq Sci 313: 658–662

    Google Scholar 

  • Hirose H, Hirahara K, Kimata F, Fujii N, Miyazaki S (1999) A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys Res Lett 26: 3237–3240

    Article  Google Scholar 

  • Kido M, Fujimoto H, Miura S, Osada Y, Tsuka K, Tabei T (2006) Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys. Earth Planets Space 58: 911–915

    Google Scholar 

  • King RW, Bock Y (2006) Documentation for the GAMIT GPS analysis software, release 10.3. Massachusetts Institute of Technology

  • Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99: 24777–24797

    Article  Google Scholar 

  • Lowry AR, Larson KM, Kostoglodov VV, Bilham RG (2001) Transient slip on the subduction interface in Guerrero, southern Mexico. Geophys Res Lett 28: 3753–3756

    Article  Google Scholar 

  • Mikhailov V, Tikhotsky S, Diament M, Panet I, Ballu V (2004) Can tectonic processes be recovered from new gravity satellite data?. Earth Plan Sci Lett 228: 281–297

    Article  Google Scholar 

  • Nooner SL, Chadwick WW (2009) Vertical uplift measured in the caldera of Axial Seamount: implications for magma supply and future eruptions. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002315

  • Obana K, Katao H, Ando M (2000) Seafloor positioning system with GPS-acoustic link for crustal dynamics observation - a preliminary result from experiments in the sea-. Earth Planets Space 52: 415–423

    Google Scholar 

  • Panet I, Mikhailov V, Diament M, Pollitz F, King G, de Viron O, Holschneider M, Biancale R, Lemoine J-M (2007) Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys J Int 171. doi:10.1111/j.1365-264X.2007.03525.x

  • Phillips KA, Chadwell CD, Hildebrand JA (2008) Vertical deformation measurements on the submerged south flank of Kilauea volcano, Hawai’i reveal seafloor motion associated with volcanic collapse. J Geophys Res 113: 15. doi:10.1029/2007JB005124

    Article  Google Scholar 

  • Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88: 4984–4996

    Article  Google Scholar 

  • Simoes M, Avouac J-P, Cattin R, Henry P (2004) The Sumatra subduction zone: a case for a locked fault zone extending into the mantle. J Geophys Res 109. doi:10.1029/2003JB002958

  • Spiess FN, Chadwell CD, Hildebrand JA, Young LE, Purcell GH, Dragert H (1998) Precise GPS/acoustic positioning of seafloor reference points for tectonic studies. Phys Earth Plan Int 108: 101–112

    Article  Google Scholar 

  • Taylor FW, Isacks BL, Jouannic C, Bloom AL, Dubois J (1980) Coseismic and quaternary vertical tectonic movements, Santo and Malekula islands, New Hebrides island arc. J Geophys Res 85: 5367–5381

    Article  Google Scholar 

  • Taylor FW, Mann P, Bevis MG et al (2005) Rapid forearc uplift and subsidence caused by impinging bathymetric features: Examples from the New Hebrides and Solomon arcs. Tectonics 24: TC6005

    Article  Google Scholar 

  • Xu P, Ando M, Tadokoro K (2005) Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques. Earth Planets Space 57: 795–808

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Ballu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballu, V., Bouin, MN., Calmant, S. et al. Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J Geod 84, 65–77 (2010). https://doi.org/10.1007/s00190-009-0345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0345-y

Keywords

Navigation