Skip to main content
Log in

Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube river

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study is a consequence of a distinct fish decline in the Danube river since the beginning of the 1990s. In contrast to the decline of fish population, former studies have repeatedly documented that the water quality along the Danube river is improving. However, the conclusion of a pilot study in 2002 was that a high hazard potential is associated with local sediments. The present study documents that sediment samples from the Danube river showed comparatively high aryl hydrocarbon receptor mediated activity in biotests, using the cell lines GPC.2D.Luc, H4IIE (DR-CALUX®) and RTL-W1. The combination of chemical analysis, fractionation techniques and different in vitro tests revealed that priority pollutants could not explain the main induction, even though the concentrations of priority polycyclic aromatic hydrocarbons (PAHs) were very high (maximum in the tributary Schwarzach, sum of 16 EPA PAHs 26 μg/g). In conclusion, this investigation shows that nonpriority pollutants mainly mediate the high induction rates. Nevertheless, owing to the effects of PAHs towards fish and the connection between dioxin-like activity and carcinogenicity, the link between contamination and the fish population decline cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burkhardt-Holm P, Giger W, Guttinger H, Ochsenbein U, Peter A, Scheurer K, Segner H, Staub E, Suter MJ (2005) Environ Sci Technol 39:441A–447A

    CAS  Google Scholar 

  2. Cook PM, Robbins JA, Endicott DD, Lodge KB, Guiney PD, Walker MK, Zabel EW, Peterson RE (2003) Environ Sci Technol 37:3864–3877

    Article  CAS  Google Scholar 

  3. de Lafontaine Y, Gilbert NL, Dumouchel F, Brochu C, Moore S, Pelletier E, Dumont P, Branchaud A (2002) Sci Total Environ 298:25–44

    Article  Google Scholar 

  4. Faller P, Kobler B, Peter A, Sumpter JP, Burkhardt-Holm P (2003) Environ Toxicol Chem 22:2063–2072

    Article  CAS  Google Scholar 

  5. Keiter S, Rastall AC, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Environ Sci Pollut Res 13:308–319

    Article  CAS  Google Scholar 

  6. Wurm K (2001) Untersuchung zum Rückgang des fischereilichen Ertrages in der Donau zwischen Sigmaringen und Erbach. Gewässerökologisches Labor, Tübingen

    Google Scholar 

  7. LfU (2004) Beschaffenheit der Fließgewässer. Jahresdatenkatalog 1972–2004 und aktueller Gütebericht 2004. Landesanstalt für Umweltschutz–Baden-Württemberg, Karlsruhe

  8. Chapman PM, Hollert H (2006) J Soils Sediments 6:4–8

    Article  Google Scholar 

  9. Safe S (1990) Crit Rev Toxicol 21:51–88

    Article  CAS  Google Scholar 

  10. Aarts JM, Denison MS, Cox MA, Schalk MA, Garrison PM, Tullis K, de Haan LH, Brouwer A (1995) Eur J Pharmacol 293:463–474

    Article  CAS  Google Scholar 

  11. Gustavsson LK, Klee N, Olsman H, Hollert H, Engwall M (2004) Environ Sci Pollut Res 11:379–387

    CAS  Google Scholar 

  12. Hilscherova K, Dusek L, Kannan K, Giesy JP, Holoubek I (2000) Cent Eur J Public Health 8:28–39

    CAS  Google Scholar 

  13. Seiler TB, Rastall AC, Leist E, Erdinger L, Braunbeck T, Hollert H (2006) J Soils Sediments 6:20–29

    Article  CAS  Google Scholar 

  14. Okey AB, Riddick DS, Harper PA (1994) Toxicol Lett 70:1–22

    Article  CAS  Google Scholar 

  15. Schirmer K, Chan AG, Bols NC (2000) J Biochem Mol Toxicol 14:262–276

    Article  CAS  Google Scholar 

  16. Giesy JP, Ludwig JP (1994) Environ Sci Technol 28:128A–136A

    Article  CAS  Google Scholar 

  17. Safe SH (1994) Crit Rev Toxicol 24:87–149

    Article  CAS  Google Scholar 

  18. Windal I, Van Wouwe N, Eppe G, Xhrouet C, Debacker V, Baeyens W, De Pauw E, Goeyens L (2005) Environ Sci Technol 39:1741–1748

    Article  CAS  Google Scholar 

  19. Walker MK, Cook PM, Butterworth BC, Zabel EW, Peterson RE (1996) Fundam Appl Toxicol 30:178–186

    Article  CAS  Google Scholar 

  20. Zabel EW, Cook PM, Peterson RE (1995) Aquat Toxicol 31:315–328

    Article  CAS  Google Scholar 

  21. Zabel EW, Walker MK, Hornung MW, Clayton MK, Peterson RE (1995) Toxicol Appl Pharmacol 134:204–213

    Article  CAS  Google Scholar 

  22. Murk AJ, Legler J, Denison MS, Giesy JP, van de Guchte C, Brouwer A (1996) Fundam Appl Toxicol 33:149–160

    Article  CAS  Google Scholar 

  23. Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Crit Rev Toxicol 30:347–570

    Article  CAS  Google Scholar 

  24. Hollert H, Heise S, Pudenz S, Bruggemann R, Ahlf W, Braunbeck T (2002) Ecotoxicol 11:311–321

    Article  CAS  Google Scholar 

  25. Brack W, Schirmer K, Erdinger L, Hollert H (2005) Environ Toxicol Chem 24:2445–2458

    Article  CAS  Google Scholar 

  26. Arcaro KF, O’Keefe PW, Yang Y, Clayton W, Gierthy JF (1999) Toxicol 133:115–127

    Article  CAS  Google Scholar 

  27. Blaha L, Hilscherova K, Mazurova E, Hecker M, Jones PD, Newsted JL, Bradley PW, Gracia T, Duris Z, Horka I, Holoubek I, Giesy JP (2006) Environ Int 32:749–757

    Article  CAS  Google Scholar 

  28. Nacci DE, Kohan M, Pelletier M, George E (2002) Aquat Toxicol 57:203–215

    Article  CAS  Google Scholar 

  29. White PA, Claxton LD (2004) Mutat Res 567:227–345

    Article  CAS  Google Scholar 

  30. Kilemade MF, Hartl MG, Sheehan D, Mothersill C, Van Pelt FN, O’Halloran J, O’Brien NM (2004) Environ Mol Mutat 44:56–64

    Article  CAS  Google Scholar 

  31. Kirby MF, Smith AJ, Rooke J, Neall P, Scott AP, Katsiadaki I (2007) Aquat Toxicol 81:233–244

    Article  CAS  Google Scholar 

  32. D’Adamo R, Pelosi S, Trotta P, Sansone G (1997) Mar Chem 56:45–49

    Article  CAS  Google Scholar 

  33. Bickham JW, Sandhu S, Hebert PD, Chikhi L, Athwal R (2000) Mutat Res 463:33–51

    Article  CAS  Google Scholar 

  34. Bols NC, Schirmer K, Joyce EM, Dixon DG, Greenberg BM, Whyte JJ (1999) Ecotoxicol Environ Saf 44:118–128

    Article  CAS  Google Scholar 

  35. Clemons JH, Myers CR, Lee LEJ, Dixon DG, Bols NC (1998) Aquat Toxicol 43:179–194

    Article  CAS  Google Scholar 

  36. Machala M, Vondracek J, Blaha L, Ciganek M, Neca JV (2001) Mutat Res 497:49–62

    CAS  Google Scholar 

  37. van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FX, Liem AK, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Environ Health Perspect 106:775–792

    Article  Google Scholar 

  38. Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Environ Sci Pollut Res 12:347–360

    Article  CAS  Google Scholar 

  39. Windal I, Denison MS, Birnbaum LS, Van Wouwe N, Baeyens W, Goeyens L (2005) Environ Sci Technol 39:7357–7364

    Article  CAS  Google Scholar 

  40. Lachmund C, Köcher B, Manz W, Heininger P (2003) J Soils Sediments 3:188–196

    Article  CAS  Google Scholar 

  41. Engwall M, Broman D, Ishaq R, Näf C, Zebühr Y, Brunström B (1996) Environ Toxicol Chem 15:213–222

    Article  CAS  Google Scholar 

  42. Brack W, Segner H, Möder M, Schüürmann G (2000) Environ Toxicol Chem 19:2493–2501

    Article  CAS  Google Scholar 

  43. Gasiewicz TA, Kende AS, Rucci G, Whitney B, Willey JJ (1996) Biochem Pharmacol 52:1787–1803

    Article  CAS  Google Scholar 

  44. Lee LEJ, Clemons JH, Bechtel DG, Caldwell SJ, Han K, Pasitschniak-Arts M, Mosser DD, Bols NC (1993) Cell Biol Toxicol 9:279–294

    Article  CAS  Google Scholar 

  45. Behrens A, Schirmer K, Bols NC, Segner H (1998) Mar Environ Res 46:369–373

    Article  CAS  Google Scholar 

  46. Klee N, Gustavsson L, Kosmehl T, Engwall M, Erdinger L, Braunbeck T, Hollert H (2004) Environ Sci Pollut Res 11:313–320

    CAS  Google Scholar 

  47. Brunström B, Halldin K (1998) Comp Biochem Physiol 121:213–219

    Article  Google Scholar 

  48. Hollert H, Dürr M, Olsman H, Halldin K, Bavel Bv, Brack W, Tysklind M, Engwall M, Braunbeck T (2002) Ecotoxicol 11:323–336

    Article  CAS  Google Scholar 

  49. White PA (2002) Mutat Res 515:85–98

    CAS  Google Scholar 

  50. Bols NC, Dayeh VR, Lee L, Schirmer K (2005) In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology in fishes. Elsevier, Amsterdam

    Google Scholar 

  51. Olsman H, Engwall M, Kammann U, Klempt M, Otte J, Van Bavel BD, Hollert H (2007) Environ Toxicol Chem (in press). DOI 10.1897/07-004

  52. Sanderson JT, Aarts JM, Brouwer A, Froese KL, Denison MS, Giesy JP (1996) Toxicol Appl Pharmacol 137:316–325

    Article  CAS  Google Scholar 

  53. Birnbaum LS, Staskal DF, Diliberto JJ (2003) Environ Int 29:855–860

    Article  CAS  Google Scholar 

  54. Garrison PM, Tullis K, Aarts JM, Brouwer A, Giesy JP, Denison MS (1996) Fundam Appl Toxicol 30:194–203

    Article  CAS  Google Scholar 

  55. Zhou JG, Henry EC, Palermo CM, Dertinger SD, Gasiewicz TA (2003) Mol Pharmacol 63:915–924

    Article  CAS  Google Scholar 

  56. Behnisch PA, Hosoe K, Sakai S (2001) Environ Int 27:495–519

    Article  CAS  Google Scholar 

  57. Doostdar H, Burke MD, Mayer RT (2000) Toxicology 144:31–38

    Article  CAS  Google Scholar 

  58. Huuskonen SE, Hahn ME, Lindstrom-Seppa P (1998) Chemosphere 36:2921–2932

    Article  CAS  Google Scholar 

  59. Martel PH, Kovacs TG, O’Connor BI, Voss RH (1997) Environ Toxicol Chem 16:2375–2383

    Article  CAS  Google Scholar 

  60. Pinkney AE, Harshbarger JC, May EB, Reichert WL (2004) Environ Toxicol Chem 23:638–647

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Federal Institute of Hydrology, Koblenz, and a German–Swedish exchange program funded by the German Academic Exchange Service (DAAD) and the Swedish Foundation for International Cooperation in Research and Higher Education (STINT). Melanie Böttcher, Nadja Seitz and Karl Wurm contributed significantly to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Keiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiter, S., Grund, S., van Bavel, B. et al. Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube river. Anal Bioanal Chem 390, 2009–2019 (2008). https://doi.org/10.1007/s00216-007-1652-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1652-x

Keywords

Navigation