Skip to main content
Log in

Large scale biomimetic membrane arrays

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical–electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro-structured 8 × 8 aperture partition arrays with average aperture diameters of 301 ± 5 μm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 × 24 and hexagonal 24 × 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.

Fluorescent image of a large 24 × 24 rectangular bilayer array

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α-HL:

α-Hemolysin

BLM:

Black lipid membrane

DPhPC:

1,2-Diphytanoyl-sn-Glycero-3-Phosphocholine

ETFE:

Ethylene tetrafluoroethylene

FomA:

Fusobacterium nucleatum outer membrane protein A

gA:

Gramicidin A

LDAO:

N-lauryl-N,N-dimethylammonium-N-oxide

NBD-PC:

1-Oleoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphocholine

TEA:

Tetraethylammonium

References

  1. Suzuki H, Takeuchi S (2008) Anal Bioanal Chem 391:2695–2702

    Article  CAS  Google Scholar 

  2. Fang Y, Frutos AG, Lahiri J (2002) J Am Chem Soc 124:2394–2395

    Article  CAS  Google Scholar 

  3. Fang Y, Hong Y, Webb B et al (2006) MRS bulletin 31:5

    Google Scholar 

  4. Fang Y, Lahiri J, Picard L (2003) Drug Discov Today 8:755–761

    Article  CAS  Google Scholar 

  5. Kaczorowski GJ, McManus OB, Priest BT et al (2008) J Gen Physiol 131:399–405

    Article  CAS  Google Scholar 

  6. Lundbaek JA (2008) J Gen Physiol 131:421–429

    Article  CAS  Google Scholar 

  7. Vogel J, Perry M, Hansen JS et al (2009) J Micromech Microeng 19:025026

    Article  CAS  Google Scholar 

  8. Hansen JS, Perry M, Vogel J et al (2009) J Micromech Microeng 19:025014

    Article  CAS  Google Scholar 

  9. Mueller P, Rudin DO (1969) Curr Topics Bioenergetics 3:157–249

    CAS  Google Scholar 

  10. Inagaki N, Narushima K, Lim SK, Park YW, Ikeda Y (2002) Journal of Polymer Science Part B: Polymer Physics 40:2871–2882

    Article  CAS  Google Scholar 

  11. Y. W. Park N I (2004) Journal of Applied Polymer Science 93:1012-1020

  12. Hemmler R, Bose G, Wagner R et al (2005) Biophys J 88:4000–4007

    Article  CAS  Google Scholar 

  13. Wilburn JP, Wright DW, Cliffel DE (2006) Analyst 131:311–316

    Article  CAS  Google Scholar 

  14. Pocanschi CL, Apell HJ, Puntervoll P et al (2006) J Mol Biol 355:548–561

    Article  CAS  Google Scholar 

  15. Benz R, Frohlich O, Lauger P et al (1975) Biochim Biophys Acta 394:323–334

    Article  CAS  Google Scholar 

  16. Stark G, Benz R, Pohl GW et al (1972) Biochim Biophys Acta 266:603–612

    Article  CAS  Google Scholar 

  17. Mayer M, Kriebel JK, Tosteson MT et al (2003) Biophys J 85:2684–2695

    Article  CAS  Google Scholar 

  18. Andersen OS, Koeppe RE 2nd (2007) Annu Rev Biophys Biomol Struct 36:107–130

    Article  CAS  Google Scholar 

  19. Mobashery N, Nielsen C, Andersen OS (1997) FEBS Lett 412:15–20

    Article  CAS  Google Scholar 

  20. Kleivdal H, Benz R, Jensen HB (1995) Eur J Biochem 233:310–316

    Article  CAS  Google Scholar 

  21. Baaken G, Sondermann M, Schlemmer C et al (2008) Lab Chip 8:938–944

    Article  CAS  Google Scholar 

  22. Lin Z, Takahashi Y, Kitagawa Y et al (2008) Anal Chem 80:6830–6833

    Article  CAS  Google Scholar 

  23. Hebert TE, Gales C, Rebois RV (2006) Cell Biochem Biophys 45:85–109

    Article  CAS  Google Scholar 

  24. Lohse MJ, Bunemann M, Hoffmann C et al (2007) Curr Opin Pharmacol 7:547–553

    Article  CAS  Google Scholar 

  25. Jeon TJ, Malmstadt N, Schmidt JJ (2006) J Am Chem Soc 128:42–43

    Article  CAS  Google Scholar 

  26. Kang XF, Cheley S, Rice-Ficht AC et al (2007) J Am Chem Soc 129:4701–4705

    Article  CAS  Google Scholar 

  27. Malmstadt N, Jeon J, Schmidt J (2008) Advanced Materials 20:84–89

    Article  CAS  Google Scholar 

  28. Oliver AE, Kendall EL, Howland MC et al (2008) Lab Chip 8:892–897

    Article  CAS  Google Scholar 

  29. Uto M, Araki M, Taniguchi T et al (1994) Analytical Sciences 10:943–946

    Article  CAS  Google Scholar 

  30. Frant MS, Ross JW Jr (1970) Science 167:987–988

    Article  CAS  Google Scholar 

  31. Schar-Zammaretti P, Ziegler U, Forster I et al (2002) Anal Chem 74:4269–4274

    Article  CAS  Google Scholar 

  32. Capone R, Blake S, Restrepo MR et al (2007) J Am Chem Soc 129:9737–9745

    Article  CAS  Google Scholar 

  33. Borisenko V, Zhang Z, Woolley GA (2002) Biochim Biophys Acta 1558:26–33

    Article  CAS  Google Scholar 

  34. Nikolelis DP, Siontorou CG (1996) Anal Chem 68:1735–1741

    Article  CAS  Google Scholar 

  35. Braha O, Gu LQ, Zhou L et al (2000) Nat Biotechnol 18:1005–1007

    Article  CAS  Google Scholar 

  36. Gu LQ, Braha O, Conlan S et al (1999) Nature 398:686–690

    Article  CAS  Google Scholar 

  37. Ashkenasy N, Sanchez-Quesada J, Bayley H et al (2005) Angew Chem Int Ed Engl 44:1401–1404

    Article  CAS  Google Scholar 

  38. Kasianowicz JJ, Brandin E, Branton D et al (1996) Proc Natl Acad Sci U S A 93:13770–13773

    Article  CAS  Google Scholar 

  39. Kasianowicz JJ, Henrickson SE, Weetall HH et al (2001) Anal Chem 73:2268–2272

    Article  CAS  Google Scholar 

  40. Vercoutere WA, Winters-Hilt S, DeGuzman VS et al (2003) Nucleic Acids Res 31:1311–1318

    Article  CAS  Google Scholar 

  41. Winters-Hilt S, Vercoutere W, DeGuzman VS et al (2003) Biophys J 84:967–976

    Article  CAS  Google Scholar 

  42. Bolstad AI, Jensen HB, Bakken V (1996) Clin Microbiol Rev 9:55–71

    CAS  Google Scholar 

  43. Jensen HB, Skeidsvoll J, Fjellbirkeland A et al (1996) Microb Pathog 21:331–342

    Article  CAS  Google Scholar 

  44. Guo M, Han YW, Sharma A et al (2000) Oral Microbiol Immunol 15:119–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jörg H. Kleinschmidt (Universität Konstanz, Germany) for the delivery and guidance with the handling and incorporation of FomA porins. The work was supported through MEMBAQ, a Specific Targeted Research Project (STREP), by the European Commission under the Sixth Framework Program (NMP4-CT-2006-033234), by The Danish National Advanced Technology Foundation (023-2007-1), and The Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus H. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J.S., Perry, M., Vogel, J. et al. Large scale biomimetic membrane arrays. Anal Bioanal Chem 395, 719–727 (2009). https://doi.org/10.1007/s00216-009-3010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3010-7

Keywords

Navigation