Skip to main content

Advertisement

Log in

Analysis of methotrexate and its eight metabolites in cerebrospinal fluid by solid-phase extraction and triple-stacking capillary electrophoresis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We establish a triple-stacking capillary electrophoresis (CE) separation method to monitor methotrexate (MTX) and its eight metabolites in cerebrospinal fluid (CSF). Three stacking methods with different mechanisms were combined and incorporated into CE separation. Complete stacking and sharp peaks were achieved. Firstly, the optimized buffer (60 mM phosphate containing 15% THF and 100 mM SDS) was filled into the capillary, which was followed by the higher conductivity buffer (100 mM phosphate, 2 psi for 45 s). The analytes extracted from CSF were injected at 2 psi for 99.9 s, which provided long sample zones and pH junction for focusing. Finally, the stacking step was performed by sweeping, and separation was achieved by micellar electrokinetic chromatography. The results of the linear regression equations indicated high linearity (r ≥ 0.9981) over the range of 0.5–7 μM. In intra- and inter-batch results, all data of RSD and RE were below 11%, indicating good precision and accuracy of this method. The LODs (S/N = 3) were 0.1 μM for MTX, 7-hydroxymethotrexate (7-OHMTX) and MTX-polyglutamates (MTX-(Glu)n, n = 2–5), 0.2 μM for MTX-(Glu)6, and 0.3 μM for 2,4-diamino-N 10-methylpteroic acid (DAMPA) and MTX-(Glu)7. Our method was implemented for analysis of MTX and its metabolites in the CSF, and could be used for evaluation of its curative effects of acute lymphoblastic leukemia patients. The data were also confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results showed good coincidence.

Mechanism of LVSS-DypH-sweeping method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chamner BA (1983) N Engl J Med 309:1094–1104

    Article  CAS  Google Scholar 

  2. Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB, Thompson RA (2003) Rapid Commun Mass Spectrom 17:2639–2648

    Article  CAS  Google Scholar 

  3. Thompson PA, Murry DJ, Rosner GL, Lunagomez S, Blaney SM, Berg SL et al (2007) Cancer Chemother Pharmacol 59:847–853

    Article  CAS  Google Scholar 

  4. Cole PD, Alcaraz MJ, Smith AK, Tan J, Kamen BA (2006) Cancer Chemother Pharmacol 57:826–834

    Article  CAS  Google Scholar 

  5. Sczesny F, Hempel G, Boos J, Blaschke G (1998) J Chromatogr B 718:177–185

    Article  CAS  Google Scholar 

  6. Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard JP (2000) Immunopharmacology 47:247–257

    Article  CAS  Google Scholar 

  7. Widemann BC, Sung E, Anderson L, Salzer WL, Balis FM, Monitjo KS et al (2000) J Pharmacol Exp Ther 294:894–901

    CAS  Google Scholar 

  8. Ranganathan P, McLeod HL (2006) Arthritis Rheum 54:1366–1377

    Article  CAS  Google Scholar 

  9. Angelis-Stoforidis P, Vajda FJ, Christophidis N (1999) Clin Exp Rheumatol 17:313–320

    CAS  Google Scholar 

  10. Gool SWV, Meyer GD, Voorde AVd, Vanmechelen E, Vanderstichele H (2004) Neurotoxicology 25:471–480

    Article  Google Scholar 

  11. Jonsson P, Hoglund P, Wiebe T, Schroder H, Seidel H, Skarby T (2007) Anticancer Drugs 18:941–948

    Google Scholar 

  12. Hiraga S, Arita N, Ohnishi T, Kohmura E, Yamamoto K, Oku Y et al (1999) J Neurosurg 91:221–230

    Article  CAS  Google Scholar 

  13. Milano G, Thyss A, Serre Debeauvais F, Laureys G, Benoit Y, Deville A et al (1990) Eur J Cancer 26:492–495

    Article  CAS  Google Scholar 

  14. Seidel H, Andersen A, Kvaloy JT, Nygaard R, Moe PJ, Jacobsen G et al (2000) Leuk Res 24:193–199

    Article  CAS  Google Scholar 

  15. Balis FM, Blaney SM, McCully CL, Bacher JD, Murphy RF, Poplack DG (2000) Cancer Chemother Pharmacol 45:259–264

    Article  CAS  Google Scholar 

  16. Li H, Luo W, Zeng Q, Lin Z, Luo H, Zhang Y (2007) J Chromatogr B 845:164–168

    Article  CAS  Google Scholar 

  17. Anzai T, Jaffe N, Wang YM (1987) J Chromatogr 415:445–449

    Article  CAS  Google Scholar 

  18. Albertioni F, Pettersson B, Beck O, Rask C, Seideman P, Peterson C (1995) J Chromatogr B 665:163–170

    Article  CAS  Google Scholar 

  19. Dervieux T, Orentas Lein D, Marcelletti J, Pischel K, Smith K, Walsh M, Richerson R (2003) Clin Chem 49:1632–1641

    Article  CAS  Google Scholar 

  20. Kuo CY, Wu HL, Kou HS, Chiou SS, Wu DC, Wu SM (2003) J Chromatogr A 1014:93–101

    Article  CAS  Google Scholar 

  21. Kuo CY, Chiou SS, Wu SM (2006) Electrophoresis 27:2905–2909

    Article  CAS  Google Scholar 

  22. Suzuki Y, Arakawa H, Maeda M (2003) Anal Sci 19:111–115

    Article  CAS  Google Scholar 

  23. Horakova J, Petr J, Maier V, Znaleziona J, Stanova A, Marak J et al (2007) J Chromatogr A 1155:193–198

    Article  CAS  Google Scholar 

  24. Britz-McKibbin P, Markuszewski MJ, Iyanagi T, Matsuda K, Nishioka T, Terabe S (2003) Anal Biochem 313:89–96

    Article  CAS  Google Scholar 

  25. Horakova J, Petr J, Maier V, Tesarova E, Veis L, Armstrong DW et al (2007) Electrophoresis 28:1540–1547

    Article  CAS  Google Scholar 

  26. Albert M, Debusschere L, Demesmay C, Rocca JL (1997) J Chromatogr A 757:291–296

    Article  CAS  Google Scholar 

  27. Zhang H, Zhou L, Chen X (2008) Electrophoresis 29:1556–1564

    Article  CAS  Google Scholar 

  28. Lin CH, Kaneta T (2004) Electrophoresis 25:4058–4073

    Article  CAS  Google Scholar 

  29. Chien RL, Burgi DS (1992) Anal Chem 84:1046–1050

    Article  Google Scholar 

  30. Burgi DS (1993) Anal Chem 65:3726–3729

    Article  CAS  Google Scholar 

  31. Britz-McKibbin P, Terabe S (2003) J Chromatogr A 1000:917–934

    Article  CAS  Google Scholar 

  32. Britz-McKibbin P, Chen DDY (2000) Anal Chem 72:1242–1252

    Article  CAS  Google Scholar 

  33. Quirino JP, Terabe S (1999) Anal Chem 71:1638–1644

    Article  CAS  Google Scholar 

  34. Quirino JP, Terabe S (1998) Science 282:465–468

    Article  CAS  Google Scholar 

  35. Britz-McKibbin P, Otsuka K, Terabe S (2002) Anal Chem 74:3736–3743

    Article  CAS  Google Scholar 

  36. Britz-McKibbin P, Terabe S (2002) Chem Rec 2:397–404

    Article  CAS  Google Scholar 

  37. Shih CM, Lin CH (2005) Electrophoresis 26:3495–3499

    Article  CAS  Google Scholar 

  38. Cheng HL, Liao YM, Chiou SS, Wu SM (2008) Electrophoresis 29:3665–3673

    Article  CAS  Google Scholar 

  39. Howard GM, Schwende FJ (1997) J Chromatogr B 693:431–436

    Article  CAS  Google Scholar 

  40. Quirino JP, Terabe S (2000) Anal Chem 72:1023–1030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Science Council of Taiwan and Kaohsiung Medical University in funding this work. We also express our gratitude to the Center of Excellence for Environmental Medicine (KMU-EM-98-1-2) for partial financial support provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Mei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HL., Chiou, SS., Liao, YM. et al. Analysis of methotrexate and its eight metabolites in cerebrospinal fluid by solid-phase extraction and triple-stacking capillary electrophoresis. Anal Bioanal Chem 398, 2183–2190 (2010). https://doi.org/10.1007/s00216-010-4152-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4152-3

Keywords

Navigation