Skip to main content
Log in

Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this contribution, the great potential of surface enhanced Raman spectroscopy (SERS) in a lab-on-a-chip (LOC) device for the detection of analyte molecules in a complex environment is demonstrated. Using LOC-SERS, the enzyme activity of thiopurine S-methyltransferase (TPMT) is analysed and identified in lysed red blood cells. The conversion of 6-mercaptopurine to 6-methylmercaptopurine catalysed by TPMT is observed as it gives evidence for the enzyme activity. Being able to determine the TPMT activity before starting a treatment using 6-mercaptopurine, an optimized dosage can be applied to each patient and serious toxicity appearing within thiopurine treatment will be prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergan S, Rugstad IE, Bentdal O, Sodal G, Hartmann A, Leivestad T, Stokke O (1998) Monitored high-dose azathioprine treatment reduces acute rejection episodes after renal transplantation. Transplantation 66(3):334–339

    Article  CAS  Google Scholar 

  2. Nielsen OH, Vainer B, Rask-Madsen J (2001) Review article: the treatment of inflammatory bowel disease with 6-mercaptopurine or azathioprine. Aliment Pharmacol Ther 15(11):1699–1708

    Article  CAS  Google Scholar 

  3. Pritchard MT, Butow PN, Stevens MM, Duley JA (2006) Understanding medication adherence in pediatric acute lymphoblastic leukemia: a review. J Pediatr Hematol Oncol 28(12):816–823

    Article  CAS  Google Scholar 

  4. Duley JA, Florin THJ (2005) Thiopurine therapies—problems, complexities, and progress with monitoring thioguanine nucleotides. Ther Drug Monit 27(5):647–654

    Article  CAS  Google Scholar 

  5. Gearry RB, Barclay ML (2005) Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J Gastroenterol Hepatol 20(8):1149–1157

    Article  CAS  Google Scholar 

  6. Zhang JP, Guan YY, Wu JH, Xu AL, Zhou SF, Huang M (2004) Phenotyping and genotyping study of thiopurine S-methyltransferase in healthy Chinese children: a comparison of Han and Yao ethnic groups. Br J Clin Pharmacol 58(2):163–168

    Article  CAS  Google Scholar 

  7. Jacqzaigrain E, Bessa E, Medard Y, Mircheva Y, Vilmer E (1994) Thiopurine methyltransferase activity in a French population—HPLC assay conditions and effects of drugs and inhibitors. Br J Clin Pharmacol 38(1):1–8

    CAS  Google Scholar 

  8. Nishida A, Kubota T, Yamada Y, Higashi K, Kitamura K, Nakahara K, Iga T (2002) Thiopurine S-methyltransferase activity in Japanese subjects: metabolic activity of 6-mercaptopurine 6-methylation in different TPMT genotypes. Clin Chim Acta 323(1–2):147–150

    Article  CAS  Google Scholar 

  9. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    Article  CAS  Google Scholar 

  10. Monaghan PB, McCarney KM, Ricketts A, Littleford RE, Docherty F, Smith WE, Graham D, Cooper JM (2007) Bead-based DNA diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance Raman scattering detection within a lab-on-a-chip format. Anal Chem 79(7):2844–2849

    Article  CAS  Google Scholar 

  11. Qiu JM, Zhou Y, Chen H, Lin JM (2009) Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 79(3):787–795

    Article  CAS  Google Scholar 

  12. Bai HY, Lin SL, Chan SA, Fuh MR (2010) Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine. Analyst 135(10):2737–2742

    Article  CAS  Google Scholar 

  13. Ehlert S, Tallarek U (2007) High-pressure liquid chromatography in lab-on-a-chip devices. Analytical And Bioanalytical Chemistry 388(3):517–520

    Article  CAS  Google Scholar 

  14. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467

    Article  CAS  Google Scholar 

  15. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8:2665–2670

    Article  CAS  Google Scholar 

  16. Strehle KR, Cialla D, Rösch P, Henkel T, Koehler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547

    Article  CAS  Google Scholar 

  17. März A, Ackermann KR, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach—online monitoring of analytes in a microfluidic system with isotope edited internal standards. J Biophotonics 2(4):232–242

    Article  Google Scholar 

  18. Hollywood KA, Shadi IT, Goodacre R (2010) Monitoring the succinate dehydrogenase activity isolated from mitochondria by surface enhanced Raman acattering. J Phys Chem C 114(16):7308–7313

    Article  CAS  Google Scholar 

  19. Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ, Cassidy C, Graham D (2004) Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat Biotechnol 22(9):1133–1138

    Article  CAS  Google Scholar 

  20. Yue ZC, Zhuang FF, Kumar R, Wang L, Cronin SB, Liu YH (2009) Cell kinase activity assay based on surface enhanced Raman spectroscopy. Spectrochim Acta, A Mol Biomol Spectrosc 73(2):226–230

    Article  Google Scholar 

  21. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  22. Henkel T, Bermig T, Kielpinski M, Grodrian A, Metze J, Kohler JM (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101(1–3):439–445

    Article  CAS  Google Scholar 

  23. R RDCTI (2008) A language and environment for statistical computing. Vienna, Austria

  24. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instrum Methods Phys Res Sect B B34:396–402

    Article  CAS  Google Scholar 

  25. Cortes C, Vapnik V (1995) Mach Learn 20:273–297

    Google Scholar 

  26. Ivanciuc O (2007) Applications of support vector machines in chemistry. In: Lipkowitz KB, Cundari TR, and Boyd DB (eds) Reviews in computational chemistry, vol. 23, pp. 291–400. Wiley-VCH, Weinheim

  27. Szeghalmi AV, Leopold L, Pinzaru S, Chis V, Silaghi-Dumitrescu I, Schmitt M, Popp J, Kiefer W (2005) Adsorption of 6-mercaptopurine and 6-mercaptopurine riboside on silver colloid: a pH dependent surface enhanced Raman spectroscopy and density functional theory study. Part I. 6-Mercaptopurine. J Mol Struct 735:103–113

    Article  Google Scholar 

  28. Vivoni A, Chen SP, Ejeh D, Hosten CM (2000) Determination of the orientation of 6-mercaptopurine adsorbed on a silver electrode by surface-enhanced Raman spectroscopy and normal mode calculations. Langmuir 16(7):3310–3316

    Article  CAS  Google Scholar 

  29. Becker M, Budich C, Deckert V, Janasek D (2009) Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device. Analyst 134:38–40

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the Free State of Thuringia and the European Union (EFRE) for financial support under support code 2008FE9112 and 2008FE9113 (BioOptiSens).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Popp.

Additional information

Published in the special issue Biophotonics with Guest Editors Jürgen Popp and Reiner Salzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

März, A., Mönch, B., Rösch, P. et al. Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS). Anal Bioanal Chem 400, 2755–2761 (2011). https://doi.org/10.1007/s00216-011-4811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4811-z

Keywords

Navigation