Skip to main content
Log in

Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  2. Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants, 6th edn. Freeman, New York

    Google Scholar 

  3. Burns MS (1982) J Microsc 127(3):237–258

    Article  CAS  Google Scholar 

  4. Hoppe P (2006) Appl Surf Sci 252(19):7102–7106

    Article  CAS  Google Scholar 

  5. Messenger S, Keller LP, Stadermann FJ, Walker RM, Zinner E (2003) Science 300(5616):105–108

    Article  CAS  Google Scholar 

  6. Floss C, Stadermann FJ, Bradley JP, Dai ZR, Bajt S, Graham G, Lea AS (2006) Geochim Cosmochim Acta 70(9):2371–2399

    Article  CAS  Google Scholar 

  7. Stern RA, Fletcher IR, Rasmussen B, McNaughton NJ, Griffin BJ (2005) Int J Mass Spectrom 244(2–3):125–134

    CAS  Google Scholar 

  8. Wacey D, Saunders M, Brasier MD, Kilburn MR (2011) Earth Planet Sci Lett 301(1–2):393–402

    Article  CAS  Google Scholar 

  9. Barker SLL, Hickey KA, Cline JS, Dipple GM, Kilburn MR, Vaughan JR, Longo AA (2009) Econ Geol 104(7):897–904

    Article  CAS  Google Scholar 

  10. Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O'Donnel AG, Murphy DV (2007) Rapid Commun Mass Spectrom 21(1):29–34

    Article  CAS  Google Scholar 

  11. Myrold DD, Pett-Ridge J, Bottomley PJ (2011) Methods Enzymol 496:91–114

    Article  Google Scholar 

  12. Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O'Donnell AG, Stockdale EA (2007) Soil Biol Biochem 39(8):1835–1850

    Article  CAS  Google Scholar 

  13. Heister K, Höschen C, Pronk GJ, Mueller CW, Kögel-Knabner I (2011) J Soils Sediments (in press)

  14. Lau KH, Christlieb M, Schröder M, Sheldon H, Harris AL, Grovenor CRM (2010) J Microsc 240(1):21–31

    Article  CAS  Google Scholar 

  15. Guerquin-Kern J-L, Hillion F, Madelmont J-C, Labarre P, Papon J, Croisy A (2004) Biomed Eng Online 3(1):10

    Article  Google Scholar 

  16. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jorgensen BB, Kuypers MMM (2008) Proc Natl Acad Sci USA 105(46):17861–17866

    Article  CAS  Google Scholar 

  17. Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld A, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park K, Ito S, Schwartz M, Benichou G, Slodzian G (2006) J Biol 5(6):20

    Article  Google Scholar 

  18. Li T, Wu TD, Mazeas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008) Environ Microbiol 10(3):580–588

    Article  CAS  Google Scholar 

  19. Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, Bergman B, Kuypers MMM (2010) ISME J 4(9):1215–1223

    Article  CAS  Google Scholar 

  20. Eybe T, Audinot JN, Bohn T, Guignard C, Migeon HN, Hoffmann L (2008) J Appl Microbiol 105(5):1502–1510

    Article  CAS  Google Scholar 

  21. Quintana C, Wu TD, Delatour B, Dhenain M, Guerquin-Kern JL, Croisy A (2007) Microsc Res Tech 70(4):281–295

    Article  CAS  Google Scholar 

  22. Marsh JM, Smart KE, Kilburn M, Schroeder M, Martin BGH, Hawes C, Grovenor CRM (2009) J Cosmet Sci 60(3):337–345

    Google Scholar 

  23. Audinot JN, Schneider S, Yegles M, Hallegot P, Wennig R, Migeon HN (2004) Appl Surf Sci 231–232:490–496

    Article  Google Scholar 

  24. Hallegot P, Peteranderl R, Lechene C (2004) J Invest Dermatol 122(2):381–386

    Article  CAS  Google Scholar 

  25. Kraft ML, Weber PK, Longo ML, Hutcheon ID, Boxer SG (2006) Science 313(5795):1948–1951

    Article  CAS  Google Scholar 

  26. Anderton CR, Lou KY, Weber PK, Hutcheon ID, Kraft ML (2011) Biochim Biophys Acta Biomembranes 1808(1):307–315

    Article  CAS  Google Scholar 

  27. Moore KL, Schroder M, Lombi E, Zhao FJ, McGrath SP, Hawkesford MJ, Shewry PR, Grovenor CRM (2010) New Phytol 185(2):434–445

    Article  CAS  Google Scholar 

  28. Moore KL, Schroder M, Wu Z, Martin B, Hawes C, McGrath SP, Hawkesford MJ, Ma JF, Zhao FJ, Grovenor CRM (2011) Plant Physiol 156(2):913–924

    Article  CAS  Google Scholar 

  29. Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) Plant J 63(5):870–879

    Article  CAS  Google Scholar 

  30. Grignon N, Vidmar JJ, Hillion F, Jaillard B (1999) In: Proceedings of the 12th international conference on secondary ion mass spectrometry, Brussels, Belgium, 1999

  31. Misson J, Henner P, Morello M, Floriani M, Wu TD, Guerquin-Kern JL, Fevrier L (2009) Environ Exp Bot 67(2):353–362

    Article  CAS  Google Scholar 

  32. Vickerman JC, Gilmore IS (2009) Surface analysis: the principal techniques, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  33. Wilson RG, Stevie FA, Magee CW (1989) Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley, New York

    Google Scholar 

  34. Benninghoven A, Reudenauer FG, Werner HW (1987) Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications, and trends. Chemical analysis. Wiley, New York

    Google Scholar 

  35. Benninghoven A (1971) Surf Sci 28(2):541–562

    Article  CAS  Google Scholar 

  36. Benninghoven A (1969) Phys Status Solidi 34(2):169

    Article  Google Scholar 

  37. Sodhi RNS (2004) Analyst 129(6):483–487

    Article  CAS  Google Scholar 

  38. Chandra S, Smith DR, Morrison GH (2000) Anal Chem 72(3):104a–114a

    Article  CAS  Google Scholar 

  39. McMahon G, Glassner BJ, Lechene CP (2006) Appl Surf Sci 252(19):6895–6906

    Article  CAS  Google Scholar 

  40. Breitenstein D, Rommel CE, Mollers R, Wegener J, Hagenhoff B (2007) Angew Chem Int Ed 46(28):5332–5335

    Article  CAS  Google Scholar 

  41. Slodzian G, Daigne B, Girard F, Boust F, Hillion F (1992) Biol Cell 74(1):43–50

    Article  CAS  Google Scholar 

  42. Brunelle A, Laprevote O (2009) Anal Bioanal Chem 393(1):31–35

    Article  CAS  Google Scholar 

  43. Lazof D, Linton RW, Volk RJ, Rufty TW (1992) Biol Cell 74(1):127–134

    Article  CAS  Google Scholar 

  44. Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) New Phytol 165(3):703–710

    Article  CAS  Google Scholar 

  45. Feeney KA, Heard PJ, Zhao FJ, Shewry PR (2003) J Cereal Sci 37(3):311–318

    Article  CAS  Google Scholar 

  46. Metzner R, Thorpe MR, Breuer U, Blumler P, Schurr U, Schneider HU, Schroeder WH (2010) Plant Cell Environ 33(8):1393–1407

    CAS  Google Scholar 

  47. Grignon N (2007) In: Kuo J (ed) Electron microscopy, methods and protocols. Methods in molecular biology, vol 369. Humana, Totowa, pp 569–591

    Google Scholar 

  48. Grignon N, Halpern S, Gojon A, Fragu P (1992) Biol Cell 74(1):143–146

    Article  CAS  Google Scholar 

  49. Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB, Herrmann AM, Murphy DV (2009) Plant Physiol 151(4):1751–1757

    Article  CAS  Google Scholar 

  50. Metzner R, Schneider HU, Breuer U, Schroeder WH (2008) Plant Physiol 147(4):1774–1787

    Article  CAS  Google Scholar 

  51. Roy S, Gillen G, Conway WS, Watada AE, Wergin WP (1995) Protoplasma 189(3–4):163–172

    Article  CAS  Google Scholar 

  52. Vickerman JCE, Brown AE, Reed NME (1989) Secondary ion mass spectrometry principles and applications. Clarendon, Oxford

    Google Scholar 

  53. Ramseyer GO, Morrison GH (1983) Anal Chem 55(12):1963–1970

    Article  CAS  Google Scholar 

  54. Derue C, Gibouin D, Lefebvre F, Studer D, Thellier M, Ripoll C (2006) Anal Chem 78(8):2471–2477

    Article  CAS  Google Scholar 

  55. Wilson RG (1995) Int J Mass Spectrom Ion Process 143:43–49

    Article  CAS  Google Scholar 

  56. Brenna JT, Morrison GH (1986) Anal Chem 58(8):1675–1680

    Article  CAS  Google Scholar 

  57. Levi-Setti RR (1988) Annu Rev Biophys Biophys Chem 17:325–347

    Article  CAS  Google Scholar 

  58. Liebl H (1975) Ion probe microanalysis. J Phys E Sci Instrum 8(10):797–808

    Article  CAS  Google Scholar 

  59. Lombi E, Scheckel KG, Kempson IM (2011) Environ Exp Bot 72(1):3–17

    Article  CAS  Google Scholar 

  60. Grovenor CRM, Smart KE, Kilburn MR, Shore B, Dilworth JR, Martin B, Hawes C, Rickaby REM (2006) Appl Surf Sci 252(19):6917–6924

    Article  CAS  Google Scholar 

  61. Lozano-Perez S, Yamada T, Terachi T, Schroder M, English CA, Smith GDW, Grovenor CRM, Eyre BL (2009) Acta Mater 57(18):5361–5381

    Article  CAS  Google Scholar 

  62. McDonald KL (2009) J Microsc 235(3):273–281

    Article  CAS  Google Scholar 

  63. Behrens S, Losekann T, Pett-Ridge J, Weber PK, Ng WO, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM (2008) Appl Environ Microbiol 74(10):3143–3150

    Article  CAS  Google Scholar 

  64. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) Nature 448(7150):209–212

    Article  CAS  Google Scholar 

  65. Lombi E, Susini J (2009) Plant Soil 320(1–2):1–35

    Article  CAS  Google Scholar 

  66. Donner E, Punshon T, Guerinot ML, Lombi E (2011) Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem (in press)

    Article  CAS  Google Scholar 

  67. Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Plant Physiol 152(1):309–319

    Article  CAS  Google Scholar 

  68. Zhao FJ, McGrath SP, Meharg AA (2010) Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  69. Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu YG, Islam R (2008) Environ Sci Technol 42(4):1051–1057

    Article  CAS  Google Scholar 

  70. Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) New Phytol 184(1):193–201

    Article  CAS  Google Scholar 

  71. Lombi E, de Jonge MD, Donner E, Ryan CG, Paterson D (2011) Anal Bioanal Chem 400(6):1637–1644

    Google Scholar 

  72. Lombi E, Smith E, Hansen TH, Paterson D, de Jonge MD, Howard DL, Persson DP, Husted S, Ryan C, Schjoerring JK (2011) J Exp Bot 62(1):273–282

    Article  CAS  Google Scholar 

  73. Ryan CG, Siddons DP, Kirkham R, Dunn PA, Kuczewski A, Moorhead G, De Geronimo G, Paterson DJ, de Jonge MD, Hough RM, Lintern MJ, Howard DL, Kappen P, Cleverley J (2010) X-Ray Opt Microanal Proc 1221:9–17

    CAS  Google Scholar 

  74. Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011) New Phytol (In press)

  75. Hayat MA (2000) Principles and techniques of electron microscopy: biological applications, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  76. Mokgalaka NS, Gardea-Torresdey JL (2006) Appl Spectrosc Rev 41(2):131–150

    Article  CAS  Google Scholar 

  77. Wu B, Zoriy M, Chen YX, Becker JS (2009) Talanta 78(1):132–137

    Article  CAS  Google Scholar 

  78. Prohaska T, Stadlbauer C, Wimmer R, Stingeder G, Latkoczy C, Hoffmann E, Stephanowitz H (1998) Sci Total Environ 219(1):29–39

    Article  CAS  Google Scholar 

  79. Robison WL (1973) In: Andersen CA (ed) Microprobe analysis. Wiley, New York, pp 271–321

    Google Scholar 

  80. Goodhew PJ, Humphreys FJ, Beanland R (2000) Electron microscopy and analysis, 3rd edn. Taylor & Francis, London

    Google Scholar 

  81. Loretto MH (1984) Electron beam analysis of materials. Chapman and Hall, London

    Book  Google Scholar 

  82. Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) Int J Mass Spectrom 260(2–3):107–114

    CAS  Google Scholar 

  83. Kramer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 130(1–4):346–350

    Article  Google Scholar 

  84. Johansson SAE, Johansson TB (1976) Nucl Instrum Methods 137(3):473–516

    Article  CAS  Google Scholar 

  85. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65(19):3049–3057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie L. Moore.

Additional information

Published in the special paper collection Elemental Imaging and Speciation in Plant Science with guest editors J. Feldmann and E. Krupp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, K.L., Lombi, E., Zhao, FJ. et al. Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. Anal Bioanal Chem 402, 3263–3273 (2012). https://doi.org/10.1007/s00216-011-5484-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5484-3

Keywords

Navigation