Skip to main content
Log in

Genotyping of intron 22 inversion of factor VIII gene for diagnosis of hemophilia A by inverse-shifting polymerase chain reaction and capillary electrophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This is the first capillary electrophoresis (CE) analysis for diagnosis of hemophilia A (HA). The intron 22 inversion of factor VIII gene (F8) causes 40–50 % of severe bleeding disorder of HA in all human populations. Consequently, identification of the disease-causing mutations is becoming increasingly important for accurate genetic counseling and prenatal diagnosis. In this study, the key steps of inverse-shifting polymerase chain reaction (IS-PCR) and of short-end injection capillary electrophoresis were used for more specific and rapid genotyping of intron 22 inversion of F8. In IS-PCR, three specific primers were used to amplify 512-bp amplicon for wild type and 584-bp amplicon for patients with intron 22 inversion. The capillary gel electrophoresis (CGE) system was performed using 1× Tris–borate–EDTA (TBE) buffer containing 0.3 % (w/v) polyethylene oxide (PEO). The PCR amplicons were electrokinetically injected at 10 kV for 10 s at a temperature of 25 °C. The optimal short-end injection CGE was applied to detect the F8 gene of HA patients and carriers within 5 min. Intron 22 inversion was indeed found on some HA patients (13/35, 37.1 %). All genotyping results showed good agreement with DNA sequencing method and long-distance polymerase chain reaction (LD-PCR). The IS-PCR combined with short-end injection CGE method was feasible and efficient for intron 22 inversion screening of F8 in the HA populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Renault NK, Dyack S, Dobson MJ, Costa T, Lam WL, Greer WL (2007) Eur J Hum Genet 15:628–637

    Article  CAS  Google Scholar 

  2. Hedner U, Ginsburg D, Lusher JM, High KA (2000) Hematology 1:241–265

    Article  Google Scholar 

  3. Ng HJ, Lee LH (2009) Ann Acad Med Singap 38:378–379

    Google Scholar 

  4. Chen YC, Hu SH, Cheng SN, Chao TY (2010) Haemophilia 16:538–544

    CAS  Google Scholar 

  5. Kemball-Cook G, Tuddenham EGD, Wacey AI (1998) Nucleic Acids Res 26:216–219

    Article  CAS  Google Scholar 

  6. Liu Q, Nozari G, Sommer SS (1998) Blood 92:1458–1459

    CAS  Google Scholar 

  7. Rost S, Loffler S, Pavlova A, Muller CR, Oldenburg J (2008) J Thromb Haemost 6:1996–1999

    Article  CAS  Google Scholar 

  8. Petkova RD, Chakarov SA, Kremensky IM (2008) Biotechnol Biotechnol Equip 22:1008–1010

    Article  CAS  Google Scholar 

  9. Rossetti LC, Radic CP, Larripa IB, Brasi CDD (2008) J Thromb Haemost 6:830–836

    Article  CAS  Google Scholar 

  10. Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H, Bartel F, Taubert H, Wuerl P, Hait W, Toppmeyer D, Offit K, Levine AJ (2006) Cancer Res 66:5104–5110

    Article  CAS  Google Scholar 

  11. Dharel N, Kato N, Muroyama R, Moriyama M, Shao RX, Kawabe T, Omata M (2006) Clin Cancer Res 12:4867–4871

    Article  CAS  Google Scholar 

  12. Ruijs MWG, Schmidt MK, Nevanlinna H, Tommiska J, Aittomäki K, Pruntel R, Verhoef S, Veer LJVT (2007) Eur J Hum Genet 15:110–114

    Article  CAS  Google Scholar 

  13. Lind H, Zienolddiny S, Ekstrøm PO, Skaug V, Haugen A (2006) Int J Cancer 119:718–721

    CAS  Google Scholar 

  14. Schwaab R, Oldenburg J, Lalloz MRA, Schwaab U, Pemberton S, Hanfland P, Brackmann HH, Tuddenham EGD, Michaelides K (1997) Hum Genet 101:323–332

    Article  CAS  Google Scholar 

  15. Oldenburg J, Ivaskevicius V, Rost S, Fregin A, White K, Holinski-Feder E (2001) J Biochem Biophys Methods 47:39–51

    Article  CAS  Google Scholar 

  16. Kasai K, Nakamura Y, White R (1990) J Forensic Sci 35:1196–1200

    CAS  Google Scholar 

  17. Liu Q, Sommer SS (1998) Bio Tech 25:1022–1028

    CAS  Google Scholar 

  18. Bergholdt AB, Jørgensen KW, Wendel L, Lehmann SV (2000) J Chromatogr A 875:403–410

    Article  CAS  Google Scholar 

  19. Nishl H, Terabe S (1995) J Chromatogr A 694:245–276

    Article  Google Scholar 

  20. Vespalec R, Boček P (1997) Electrophoresis 18:843–852

    Article  CAS  Google Scholar 

  21. Strege M, Lagu A (1997) Anal Chem 63:1233–1236

    Article  Google Scholar 

  22. Altria KD, Kelly MA, Clark BJ (1998) Trends Anal Chem 17:204–212

    Article  CAS  Google Scholar 

  23. Chen YL, Jong YJ, Hsien JS, Shih CJ, Feng CH, Wu MT, Wu SM (2008) Electrophoresis 29:634–640

    Article  CAS  Google Scholar 

  24. Chen YL, Shih CJ, Chang YS, Chang JG, Wu SM (2009) J Chromatogr A 1216:1206–1212

    Article  CAS  Google Scholar 

  25. Wang CC, Chao KH, Chen YL, Chang JG, Wu SM (2012) J Chromatogr A 1256:276–279

    Article  CAS  Google Scholar 

  26. Wang CC, Jong YJ, Chang JG, Chen YL, Wu SM (2010) Anal Bioanal Chem 397:2375–2383

    Article  CAS  Google Scholar 

  27. Lausch R, Scheper T (1993) J Chromatogr A 654:190–195

    Article  CAS  Google Scholar 

  28. Altria KD (1993) J Chromatogr A 636:125–132

    Article  CAS  Google Scholar 

  29. Perrett D, Ross GA (1995) J Chromatogr A 700:179–186

    Article  CAS  Google Scholar 

  30. Cahours X, Viron C, Morin P, Renimel I, André P, Lafosse M (2001) Anal Chim Acta 441:15–21

    Article  CAS  Google Scholar 

  31. Thornhill AR, Snow K (2002) J Mol Diagn 4:11–29

    Article  CAS  Google Scholar 

  32. Ole O, Henrik Z (1992) Tissue Antigens 39:225–235

    Article  Google Scholar 

  33. Wells D, Sherlock JK (1998) Prenat Diagn 18:1389–1401

    Article  CAS  Google Scholar 

  34. Wang CC, Chang JG, Ferrance J, Chen HY, You CY, Chang YF, Jong YJ, Wu SM, Yeh CH (2008) Electrophoresis 29:2904–2911

    Article  CAS  Google Scholar 

  35. Wang CC, Chang JG, Jong YJ, Wu SM (2009) Electrophoresis 30:1102–1110

    Article  CAS  Google Scholar 

  36. Chen YL (2010) Electrophoresis 32:379–385

    Article  Google Scholar 

  37. Ren J, Ueland PM (1999) Hum Mutat 13:458–463

    Article  CAS  Google Scholar 

  38. Lin SR, Chang SC, Lee CC, Shen MC, Lin SW (1995) Br J Haematol 91:722–727

    Article  CAS  Google Scholar 

  39. Gai JP, Hsu HC, Ho CH (2003) J Chin Med Assoc 66:518–522

    Google Scholar 

  40. Lin SY, Su YN, Hung CC, Tsay W, Chiou SS, Chang CT, Ho HN, Lee CN (2008) BMC Med Genet 9:1–14

    Article  Google Scholar 

Download references

Acknowledgments

We deeply extend our sincere thanks to the families who kindly contributed samples that were crucial to this study. We gratefully acknowledge the support of the Ministry of Science and Technology of Taiwan (MoST), Kaohsiung Medical University, and NSYSU-KMU 103-P023 JOINT RESEARCH PROJECT (#NSYSUKMU103-P023) by way of funding of this work, and the help of Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shyh-Shin Chiou or Shou-Mei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, TY., Wang, CC., Shih, CJ. et al. Genotyping of intron 22 inversion of factor VIII gene for diagnosis of hemophilia A by inverse-shifting polymerase chain reaction and capillary electrophoresis. Anal Bioanal Chem 406, 5447–5454 (2014). https://doi.org/10.1007/s00216-014-7969-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7969-3

Keywords

Navigation