Skip to main content

Advertisement

Log in

Quantitation of endogenous nucleoside triphosphates and nucleosides in human cells by liquid chromatography tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nucleosides and nucleoside triphosphates are the building blocks of nucleic acids and important bioactive metabolites, existing in all living cells. In the present study, two liquid chromatography tandem mass spectrometry methods were developed to quantify both groups of compounds from the same sample with a shared extraction procedure. After a simple protein precipitation with methanol, the nucleosides were separated with reversed phase chromatography on an Atlantis T3 column while for the separation of the nucleoside triphosphates, an anion exchange column (BioBasic AX) was used. No addition of ion pair reagent was required. A 5500 QTrap was used as analyzer, operating as triple quadrupole. The analytical method for the nucleoside triphosphates has been validated according to the guidelines of the US Food and Drug Administration. The lower limit of quantification values were determined as 10 pg on column (0.5 ng/mL in the injection solution) for deoxyadenosine triphosphate and deoxyguanosine triphosphate, 20 pg (1 ng/mL) for deoxycytidine triphosphate and thymidine triphosphate, 100 pg (5 ng/mL) for cytidine triphosphate and guanosine triphosphate, and 500 pg (25 ng/mL) for adenosine triphosphate und uridine triphosphate respectively. This methodology has been applied to the quantitation of nucleosides and nucleoside triphosphates in primary human CD4 T lymphocytes and macrophages. As expected, the concentrations for ribonucleosides and ribonucleoside triphophates were considerably higher than those obtained for the deoxy derivatives. Upon T cell receptor activation, the levels of all analytes, with the notable exceptions of deoxyadenosine triphosphate and deoxyguanosine triphosphate, were found to be elevated in CD4 T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):414–492

    Google Scholar 

  2. Coulier L, Gerritsen H, van Kampen JJ, Reedijk ML, Luider TM, Osterhaus AD, Gruters RA, Brull L (2011) Comprehensive analysis of the intracellular metabolism of antiretroviral nucleosides and nucleotides using liquid chromatography-tandem mass spectrometry and method improvement by using ultra performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 879(26):2772–2782

    Article  CAS  Google Scholar 

  3. Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55(2):459–472

    Article  CAS  Google Scholar 

  4. Anderson PL, Kakuda TN, Lichtenstein KA (2004) The cellular pharmacology of nucleoside- and nucleotide-analogue reverse transcriptase inhibitors and its relationship to clinical toxicities. Clin Infect Dis 38:743–753

    Article  CAS  Google Scholar 

  5. Cohen S, Jordheim LP, Megherbi M, Dumontet C, Guitton J (2010) Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy: a review. J Chromatogr B Analyt Technol Biomed Life Sci 878(22):1912–1928

    Article  CAS  Google Scholar 

  6. Perl A, Gergely P Jr, Puskas F, Banki K (2002) Metabolic switches of T-cell activation and apoptosis. Antioxid Redox Signal 4(3):427–443

    Article  CAS  Google Scholar 

  7. Dayton JS, Lindsten T, Thompson CB, Mitchell BS (1994) Effects of human T lymphocyte activation on inosine monophosphate dehydrogenase expression. J Immunol 152(3):984–991

    CAS  Google Scholar 

  8. Rampazzo C, Miazzi C, Franzolin E, Pontarin G, Ferraro P, Frangini M, Reichard P, Bianchi V (2010) Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat Res 703(1):2–10

    Article  CAS  Google Scholar 

  9. Ferraro P, Franzolin E, Pontarin G, Reichard P, Bianchi V (2010) Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res 38(6):e85

    Article  Google Scholar 

  10. Roy B, Beuneu C (1999) Simultaneous determination of pyrimidine or purine deoxyribonucleoside triphosphates using a polymerase assay. Anal Biochem 269:403–409

    Article  CAS  Google Scholar 

  11. Huang D, Zhang Y (2003) Analysis of intracellular nucleoside triphosphate levels in normal and tumor cell lines by high-performance liquid chromatography. J Chromatogr B 784:101–109

    Article  CAS  Google Scholar 

  12. Padivitage NLT, Dissanayake MK, Armstrong DW (2013) Separation of nucleotides by hydrophilic interaction chromatography using the FRULIC-N column. Anal Bioanal Chem 405:8837–8848

    Article  CAS  Google Scholar 

  13. Dd P, Tavazzi B (1995) An Ion pairing HPLC method for the direct simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides, and bases in perchloric acid cell extracts. Anal Biochem 231:407–412

    Article  Google Scholar 

  14. Banoub J (2005) Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 105:1869–1915

    Article  CAS  Google Scholar 

  15. Dudley E, Bond L (2013) Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev 33:302–331

    Article  Google Scholar 

  16. Chen P, Liu Z, Liu S, Xie Z, Aimiuwu J, Pang J, Klisovic R, Blum W, Grever MR, Marcucci G, Chan KK (2009) A LC-MS/MS method for the analysis of intracellular nucleoside triphosphate levels. Pharm Res 26(6):1504–1515

    Article  CAS  Google Scholar 

  17. Cohen S, Megherbi M, Jordheim LP, Lefebvre I, Perigaud C, Dumontet C, Guitton J (2009) Simultaneous analysis of eight nucleoside triphosphates in cell lines by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877(30):3831–3840

    Article  CAS  Google Scholar 

  18. Henneré G, Becher F, Pruvost A, Goujard C, Grassi J, Benech H (2003) Liquid chromatography–tandem mass spectrometry assays for intracellular deoxyribonucleotide triphosphate competitors of nucleoside antiretrovirals. J Chromatogr B 789(2):273–281

    Article  Google Scholar 

  19. Cordell RL, Hill SJ, Ortori CA, Barrett DA (2008) Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 871(1):115–124

    Article  CAS  Google Scholar 

  20. Hawkins T, Veikley W, Durand-Gasselin L, Babusis D, Reddy YS, Flaherty JF, Ray AS (2011) Intracellular nucleotide levels during coadministration of tenofovir disoproxil fumarate and didanosine in HIV-1-infected patients. Antimicrob Agents Chemother 55(4):1549–1555

    Article  CAS  Google Scholar 

  21. Coulier L, van Kampen JJ, de Groot R, Gerritsen HW, Bas RC, van Dongen WD, Brull LP, Luider TM (2008) Simultaneous determination of endogenous deoxynucleotides and phosphorylated nucleoside reverse transcriptase inhibitors in peripheral blood mononuclear cells using ion-pair liquid chromatography coupled to mass spectrometry. Proteomics Clin Appl 2(10–11):1557–1562

    Article  CAS  Google Scholar 

  22. Seifar RM, Ras C, van Dam JC, van Gulik WM, Heijnen JJ, van Winden WA (2009) Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Anal Biochem 388(2):213–219

    Article  CAS  Google Scholar 

  23. Klawitter J, Schmitz V, Klawitter J, Leibfritz D, Christians U (2007) Development and validation of an assay for the quantification of 11 nucleotides using LC/LC-electrospray ionization-MS. Anal Biochem 365(2):230–239

    Article  CAS  Google Scholar 

  24. Kuhlmann FE, Apffel A (1995) Signal enhancement for gradient RP-HPLC-ESI-MS analysis with TFA and other strong acid modifiers by post-column addition of propionic acid and isopropanol. J Am Soc Mass Spectrom 6:1221–1225

    Article  CAS  Google Scholar 

  25. Zhao Y, Liu G, Liu Y, Yuan L, Hawthorne D, Shen JX, Guha M, Aubry A (2013) Improved ruggedness of an ion-pairing liquid chromatography/tandem mass spectrometry assay for the quantitative analysis of the triphosphate metabolite of a nucleoside reverse transcriptase inhibitor in peripheral blood mononuclear cells. Rapid Commun Mass Spectrom 27(3):481–488

    Article  CAS  Google Scholar 

  26. Machon C, Jordheim LP, Puy JY, Lefebvre I, Dumontet C, Guitton J (2014) Fully validated assay for the quantification of endogenous nucleoside mono- and triphosphates using online extraction coupled with liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 406(12):2925–2941

    Article  CAS  Google Scholar 

  27. Shi G (2002) Novel direct detection method for the quantitative determination of intracellular NTP-levels by means of WAX-LC-MS/MS. Rapid Commun Mass Spectrom 16:1092–1099

    Article  CAS  Google Scholar 

  28. Gill BD, Indyk HE (2007) Development and application of a liquid chromatographic method for analysis of nucleotides and nucleosides in milk and infant formulas. Int Dairy J 17(6):596–605

    Article  CAS  Google Scholar 

  29. Xu G, Enderle H, Liebich H, Lu P (2000) Study of normal and modified nucleosides in serum by RP-HPLC. Chromatographia 52(3/4):152–158

    Article  CAS  Google Scholar 

  30. Gill BD, Indyk HE, Manley-Harris M (2013) Analysis of nucleosides and nucleotides in infant formula by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 405(15):5311–5319

    Article  CAS  Google Scholar 

  31. Neubauer S, Rugova A, Chu DB, Drexler H, Ganner A, Sauer M, Mattanovich D, Hann S, Koellensperger G (2012) Mass spectrometry based analysis of nucleotides, nucleosides, and nucleobases—application to feed supplements. Anal Bioanal Chem 404(3):799–808

    Article  CAS  Google Scholar 

  32. Studzińska S, Buszewski B (2014) Analysis of normal and modified nucleosides in urine samples by high-performance liquid chromatography with different stationary phases. Biomed Chromatogr 28(8):1140–1146

    Article  Google Scholar 

  33. Chen F, Zhang F, Yang N, Liu X (2013) Simultaneous determination of 10 nucleosides and nucleobases in Antrodia camphorata using QTRAP LC-MS/MS. J Chromatogr Sci 52(8):852–861

    Article  Google Scholar 

  34. Zhang LL, Bai YL, Shu SL, Qian DW, Ou-Yang Z, Liu L, Duan JA (2014) Simultaneous quantitation of nucleosides, nucleobases, amino acids, and alkaloids in mulberry leaf by ultra high performance liquid chromatography with triple quadrupole tandem mass spectrometry. J Sep Sci 37(11):1265–1275. doi:10.1002/jssc.201301267

    Article  CAS  Google Scholar 

  35. Dudley E, Lemiere F, Van Dongen W (2001) Analysis of urinary nucleosides. II. Comparison of mass spectrometric methods for the analysis of urinary nucleosides. Rapid Commun Mass Spectrom 15:1701–1707

    Article  CAS  Google Scholar 

  36. Yamaoka N, Kudo Y, Inazawa K, Inagawa S, Yasuda M, Mawatari K, Nakagomi K, Kaneko K (2010) Simultaneous determination of nucleosides and nucleotides in dietary foods and beverages using ion-pairing liquid chromatography-electrospray ionization-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878(23):2054–2060

    Article  CAS  Google Scholar 

  37. Badouard C, Masuda M, Nishino H, Cadet J, Favier A, Ravanat J-L (2005) Detection of chlorinated DNA and RNA nucleosides by HPLC coupled to tandem mass spectrometry as potential biomarkers of inflammation. J Chromatogr B 827(1):26–31

    Article  CAS  Google Scholar 

  38. Hu J, Zhang W, Ma H, Cai Y, Sheng G, Fu J (2010) Simultaneous determination of 8-hydroxy-2′-deoxyguanosine and 5-methyl-2′-deoxycytidine in DNA sample by high performance liquid chromatography/positive electrospray ionization tandem mass spectrometry. J Chromatogr B 878(28):2765–2769

    Article  CAS  Google Scholar 

  39. Weimann A (2002) Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by HPLC-MS/MS. Nucleic Acids Res 30(2):e7

    Article  Google Scholar 

  40. Dudley E, Lemiere F, Van Dongen W, Tuytten R, El-Sharkawi S, Brenton AG, Esmans EL, Newton RP (2004) Analysis of urinary nucleosides. IV. Identification of urinary purine nucleosides by liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 18(22):2730–2738

    Article  CAS  Google Scholar 

  41. Czarnecka J, Cieslak M, Michal K (2005) Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 822(1–2):85–90

    Article  CAS  Google Scholar 

  42. Xing J, Apedo A, Tymiak A, Zhao N (2004) Liquid chromatographic analysis of nucleosides and their mono-, di- and triphosphates using porous graphitic carbon stationary phase coupled with electrospray mass spectrometry. Rapid Commun Mass Spectrom 18(14):1599–1606

    Article  CAS  Google Scholar 

  43. Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B (2006) Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood 108(5):1635–1642

    Article  CAS  Google Scholar 

  44. US FDA UDoHaHS, FDA, Center for Drug Evaluation and Research, Rockville, MD, USA (2001) Guidance for industry—analytical method validation. http://www.fdagov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070107pdf, accessed 04/04/2013

  45. Jan S, Krouwer RR (1984) How to improve estimates of imprecision. Clin Chem 30:290–292

    Google Scholar 

  46. Cohen A, Barankiewicz J, Lederman HM, Gelfand EW (1983) Purine and pyrimidine metabolism in human T lymphocytes. J Biol Chem 258(20):12334–12340

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andreas Weigert from the Institute of Biochemistry I of the Goethe University Frankfurt for providing the macrophages. This work was supported by the Else Kroener Fresenius Foundation (Translational Research Innovation Pharma, TRIP) and the LOEWE program from the state of Hesse (Translational Medicine and Pharmacology, TMP). Furthermore, it was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) to O.T.K. (KE 742/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nerea Ferreirós.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D., Herold, N., Keppler, O.T. et al. Quantitation of endogenous nucleoside triphosphates and nucleosides in human cells by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 407, 3693–3704 (2015). https://doi.org/10.1007/s00216-015-8588-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8588-3

Keywords

Navigation