Skip to main content
Log in

Interactions Between Hyphosphere-Associated Bacteria and the Fungus Cladosporium herbarum on Aquatic Leaf Litter

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We investigated microbial interactions of aquatic bacteria associated with hyphae (the hyphosphere) of freshwater fungi on leaf litter. Bacteria were isolated directly from the hyphae of fungi from sedimented leaves of a small stream in the National Park “Lower Oder,” Germany. To investigate interactions, bacteria and fungi were pairwise co-cultivated on leaf-extract medium and in microcosms loaded with leaves. The performance of fungi and bacteria was monitored by measuring growth, enzyme production, and respiration of mono- and co-cultures. Growth inhibition of the fungus Cladosporium herbarum by Ralstonia pickettii was detected on leaf extract agar plates. In microcosms, the presence of Chryseobacterium sp. lowered the exocellulase, endocellulase, and cellobiase activity of the fungus. Additionally, the conversion of leaf material into microbial biomass was retarded in co-cultures. The respiration of the fungus was uninfluenced by the presence of the bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson RC, Liberta AE, Packheiser J, Neville ME (1980) Inhibition of selected fungi by bacterial isolates from Trispsacum dactyloides L. Plant and Soil 56:149–152

    Article  Google Scholar 

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Bärlocher F (1992) Research on aquatic hyphomycetes: historical background and overview. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin, pp 1–15

    Google Scholar 

  4. Baldy V, Gessner MO (1997) Towards a budget of leaf litter decomposition in a first-order woodland stream. C R Acad Sci, Ser III Sci Vie/Life Sci 320:747–758

    Google Scholar 

  5. Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102

    Article  Google Scholar 

  6. Barron GL (1988) Microcolonies of bacteria as a nutrient source for lignicolous and other fungi. Can J Bot 66:2505–2510

    Article  Google Scholar 

  7. Bengtsson G (1992) Interactions between fungi, bacteria and beech leaves in a stream microcosm. Oecologia 89:542–549

    Google Scholar 

  8. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. Nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46(1):128–148

    Google Scholar 

  9. Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family gigasporaceae. App Environ Microbiol 66:4503–4509

    Article  CAS  Google Scholar 

  10. Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16

    Article  CAS  Google Scholar 

  11. De Boer WJH, Leveau J, Kowalchuk GA, Klein Gunnewiek PJA, Abeln ECA, Figge MJ, Sjollema K, Janse JD, van Veen JA (2004) Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int J Syst Evol Microbiol 54:857–864

    Article  PubMed  CAS  Google Scholar 

  12. De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Article  PubMed  CAS  Google Scholar 

  13. Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi, 2nd edn. IHW, Eching, pp 142–144

    Google Scholar 

  14. Gams W, Hoekstra ES, Aptroot A (1998) CBS course of mycology. Centraalbureau voor Schimmelcultures Baarn, Delft

    Google Scholar 

  15. Gulis VI, Stephanowich AI (1999) Antibiotic effects of some aquatic hyphomycetes. Mycol Res 103:111–115

    Article  Google Scholar 

  16. Gulis V, Suberkropp K (2003) Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat Microb Ecol 30:149–157

    Article  Google Scholar 

  17. Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagami Y (2001) New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycete, Clavariopsis aquatica 1. Taxonomy, fermentation, isolation, and biological properties. J Antibiot 54:17–21

    PubMed  CAS  Google Scholar 

  18. Lane DJ (1991) 16s/23s rRNA sequencing. In: Stackebrand E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  19. Lawrence JR, Neu TR (2003) Microscale analyses of the formation and nature of microbial biofilm communities in river systems. Rev Environ Biotechnol 2–4:85–97

    Article  Google Scholar 

  20. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  21. Makkar HPS, Singh B (1992) Effect of Steaming and Autoclaving Oak (Quercus incana) leaves on levels of tannins, fibre and lignin and in-sacco dry matter digestibility. J Sci Food Agric 59:469–472

    Article  CAS  Google Scholar 

  22. Mille-Lindblom C, Tranvik LJ (2003) Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb Ecol 45:73–182

    Article  Google Scholar 

  23. Mille-Lindblom C, Fischer H, Tranvik LJ (2006) Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233–242

    Article  Google Scholar 

  24. Møller J, Miller M, Kjøller A (1999) Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biochem 31:367–374

    Article  Google Scholar 

  25. Motta AS, Cladera-Olivera F, Brandelli A (2004) Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. Braz J Microbiol 35:307–310

    Article  CAS  Google Scholar 

  26. Nordgren A (1988) Apparatus for the continuous long-term monitoring of soil respiration rate in large numbers of samples. Soil Biol Biochem 20:955–958

    Article  CAS  Google Scholar 

  27. Partida-Martinez L, Monajembashi S, Greulich K, Hertweck C (2007) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777

    Article  PubMed  CAS  Google Scholar 

  28. Platas G, Pelaez F, Collado J, Villuendas G, Diez MT (1998) Screening of antimicrobial activities by aquatic hyphomycetes cultivated on various nutrient sources. Cryptogam Mycol 19:33–43

    Google Scholar 

  29. Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2, 4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  PubMed  CAS  Google Scholar 

  30. Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Article  PubMed  Google Scholar 

  31. Sambrook J, Russel DW (2001) Molecular Cloning—a laboratory manual. CSHL, Cold Spring Harbour, p 16.15

    Google Scholar 

  32. Shearer CA, Zare-Mavian H (1988) In vitro hyphal interactions among wood- and leaf-inhabiting Ascomycetes and Fungi Imperfecti from freshwater habitats. Mycologia 80:31–37

    Article  Google Scholar 

  33. Srivastava AK, Arora DK, Gupta S, Pandey RR, Lee MW (1996) Diversity of potential microbial parasites colonizing sclerotia of Macrophomina phaseolina in soil. Biol Fert Soils 22:136–140

    Article  Google Scholar 

  34. Staněk M (1984) Microorganisms in the hyphosphere of fungi. I. Introduction. Czech Mycol 38:1–10

    Google Scholar 

  35. Stelzmueller I, Biebl M, Wiesmayr S, Eller M, Hoeller E, Fille M, Weiss G, Lass-Floerl C, Bonatti H (2006) Ralstonia pickettii-innocent bystander or a potential threat? Clin Microb Infect 12:99–102

    Article  CAS  Google Scholar 

  36. Suberkropp K, Klug MJ (1976) Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–719

    Article  Google Scholar 

  37. Sutherland IW (1977) Bacterial exopolysaccharides, their nature and production. In: Sutherland W (ed) Surface carbohydrates of the prokaryotic cell. Academic, London, pp 27–96

    Google Scholar 

  38. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed  CAS  Google Scholar 

  39. Weyers HS, Suberkropp K (1996) Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. J N Am Benthol Soc 15:408–420

    Article  Google Scholar 

  40. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  41. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microb Rev 25:365–404

    Article  CAS  Google Scholar 

  42. Wohl DL, McArthur JV (2001) Aquatic actinomycete-fungal interactions and their effects on organic matter decomposition: a microcosm study. Microb Ecol 42:446–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Maike Mai (TU Berlin Department of Waste Management and Environmental Research) who attended the respiration rate measurements. We are also very thankful for the aid of Sabine Rautenberg (TU Berlin Department of Soil Science) with the chromatography analysis. We thank Joseph Bishop of the University of Missouri-Rolla, USA for revising the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Baschien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baschien, C., Rode, G., Böckelmann, U. et al. Interactions Between Hyphosphere-Associated Bacteria and the Fungus Cladosporium herbarum on Aquatic Leaf Litter. Microb Ecol 58, 642–650 (2009). https://doi.org/10.1007/s00248-009-9528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9528-6

Keywords

Navigation