Skip to main content

Advertisement

Log in

Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IPCC (2007) Intergovernmental Panel on Climate Change, Climate change 2007: Synthesis Report, A contribution of Working groups I, II and III to the Fourth Assessment Report of the IPCC

  2. Ball S, Drake B (1997) Short-term decomposition of litter produced by plants grown in ambient and elevated atmospheric CO2 concentrations. Glob Chang Biol 3:29–35

    Article  Google Scholar 

  3. King JS, Pregitzer KS, Zak DR, Holmes WE, Schmidt K (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia 146:318–328

    Article  CAS  PubMed  Google Scholar 

  4. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, Van Der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  5. Janus L, Angeloni N, McCormack J, Rier S, Tuchman N, Kelly J (2005) Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microb Ecol 50:102–109

    Article  PubMed  Google Scholar 

  6. Kelly J, Peterson E, Winkelman J, Walter T, Rier S, Tuchman N (2013) Elevated atmospheric CO2 impacts abundance and diversity of nitrogen cycling functional genes in soil. Microb Ecol 65:394–404

    Article  CAS  PubMed  Google Scholar 

  7. Lipson D, Blair M, Barron-Gafford G, Grieve K, Murthy R (2006) Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microb Ecol 51:302–314

    Article  PubMed  Google Scholar 

  8. Ceulemans R, Mousseau M (1994) Tansley Review No. 71 Effects of elevated atmospheric CO2 on woody plants. New Phytol 127:425–446

    Article  Google Scholar 

  9. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future*. Ann Rev Plant Biol 55:591–628

    Article  CAS  Google Scholar 

  10. Cotrufo MF, Briones MJ, Ineson P (1998) Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol Biochem 30:1565–1571

    Article  CAS  Google Scholar 

  11. Lindroth RI, Kinney KK, Platz CL (1993) Responses of diciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777

    Article  CAS  Google Scholar 

  12. Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Chang Biol 3:217–224

    Article  Google Scholar 

  13. Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci U S A 104:14014–14019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kandeler E, Tscherko D, Bardgett RD, Hobbs PJ, Kampichler C, Jones TH (1998) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 202:251–262

    Article  CAS  Google Scholar 

  15. van Veen JA, Liljeroth E, Lekkerkerk LJA, van de Geijn SC (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol Appl 1:175–181

    Article  Google Scholar 

  16. van Ginkel JH, Gorissen A, Polci D (2000) Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition. Soil Biol Biochem 32:449–456

    Article  Google Scholar 

  17. Zak D, Pregitzer K, Curtis P, Teeri J, Fogel R, Randlett D (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    Article  CAS  Google Scholar 

  18. Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  CAS  PubMed  Google Scholar 

  19. He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13:564–575

    Article  PubMed  Google Scholar 

  20. Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Chang Biol 16:836–848

    Article  Google Scholar 

  21. Niklaus PA, Kandeler E, Leadley PW, Schmid B, Tscherko D, Korner C (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127:540–548

    Article  Google Scholar 

  22. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths BS, Ritz K, Ebblewhite N, Paterson E, Killham K (1998) Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations, with observations on wheat rhizosphere. Soil Biol Biochem 30:315–321

    Article  CAS  Google Scholar 

  24. Montealegre CM, van Kessel C, Russelle MP, Sadowsky MJ (2002) Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant Soil 243:197–207

    Article  CAS  Google Scholar 

  25. Jossi M, Fromin N, Tarnawski S, Kohler F, Gillet F, Aragno M, Hamelin J (2006) How elevated pCO2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiol Ecol 55:339–350

    Article  CAS  PubMed  Google Scholar 

  26. Dunbar J, Eichorst SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR, Kuske CR (2012) Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol 14:1145–1158

    Article  CAS  PubMed  Google Scholar 

  27. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  28. Hodge A, Millard P (1998) Effect of elevated CO2 on carbon partitioning and exudate release from Plantago lanceolata seedlings. Physiol Plant 103:280–286

    Article  CAS  Google Scholar 

  29. Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28:1717–1724

    Article  CAS  Google Scholar 

  30. Montealegre CM, van Kessel C, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Chang Biol 6:475–482

    Article  Google Scholar 

  31. Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    Article  CAS  PubMed  Google Scholar 

  32. Drigo B, Van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. ISME J 3:1204–1217

    Article  CAS  PubMed  Google Scholar 

  33. Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci U S A 104:4990–4995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Leberecht M (2014) Function of mycorrhiza in the competition for nitrogen in calcareous beech forests. ediss Georg-August Universität Göttingen. Göttingen, Germany

  35. Bilela S, Dounavi A, Fussi B, Konnert M, Holst J, Mayer H, Rennenberg H, Simon J (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. For Ecol Manag 275:60–67

    Article  Google Scholar 

  36. Gessler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beach (Fagus sylvatica). New Phytol 150:653–664

    Article  Google Scholar 

  37. IUSS (2007) Working Group WRB, World Reference Base for Soil Resources 2006, first update 2007. FAO, Rome

    Google Scholar 

  38. Gessler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298

    Article  CAS  PubMed  Google Scholar 

  39. Dyckmans J (2000) Untersuchung der Aufnahme und Translokation von C und N in Buchen in Abhängigkeit der atmosphärischen CO2-Konzentration und bauminternen N Vorräte unter Einsatz der stabilen Isotope 15N und 13C. ediss Georg-August Universität Göttingen. Göttingen, Germany

  40. Gschwendtner S, Reichmann M, Müller M, Radl V, Munch J, Schloter M (2010) Effects of genetically modified amylopectin-accumulating potato plants on the abundance of beneficial and pathogenic microorganisms in the rhizosphere. Plant Soil 335:413–422

    Article  CAS  Google Scholar 

  41. Dannenmann M, Simon J, Gasche R, Holst J, Naumann PS, Kögel-Knabner I, Knicker H, Mayer H, Schloter M, Pena R, Polle A, Rennenberg H, Papen H (2009) Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41:1622–1631

    Article  CAS  Google Scholar 

  42. Schreiner K, Hagn A, Kyselková M, Moënne-Loccoz Y, Welzl G, Munch JC, Schloter M (2010) Comparison of barley succession and Take-All disease as environmental factors shaping the rhizobacterial community during Take-All decline. Appl Environ Microbiol 76:4703–4712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Blackwood CB, Marsh T, Kim SH, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pilloni G, Granitsiotis MS, Engel M, Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 7:e40467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Schloss PD (2009) A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One 4:e8230

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mrkonjic Fuka M, Engel M, Gattinger A, Bausenwein U, Sommer M, Munch JC, Schloter M (2008) Factors influencing variability of proteolytic genes and activities in arable soils. Soil Biol Biochem 40:1646–1653

    Article  Google Scholar 

  47. Pagani I, Liolios K, Jansson J, Chen IMA, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 40:D571–D579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bunge J (2011) Estimating the numbers of species with CatchAll. Biocomputing 2011:121–130

  50. Blaschke L, Forstreuter M, Sheppard LJ, Leith IK, Murray MB, Polle A (2002) Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Tree Physiol 22:469–477

    Article  CAS  PubMed  Google Scholar 

  51. Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey G (1995) The effects of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens grown in a FACE system. Glob Chang Biol 1:361–371

    Article  Google Scholar 

  52. Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812

    Article  CAS  PubMed  Google Scholar 

  53. Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  54. Insam H, Baath E, Berreck M, Frostegard A, Gerzabek MH, Kraft A, Schinner F, Schweiger P, Tschuggnall G (1999) Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. J Microbiol Methods 36:45–54

    Article  CAS  PubMed  Google Scholar 

  55. Lauber W, Kaerner C (1997) In situ stomatal responses to long-term CO2 enrichment in calcareous grassland plants. Acta Oecol 18:221–229

    Article  Google Scholar 

  56. Stocker R, Korner C, Schmid B, Niklaus PA, Leadley PW (1999) A field study of the effects of elevated CO2 and plant species diversity on ecosystem-level gas exchange in a planted calcareous grassland. Glob Chang Biol 5:95–105

    Article  Google Scholar 

  57. Rillig MC, Allen MF (1998) Arbuscular mycorrhizae of Gutierrezia sarothrae and elevated carbon dioxide: evidence for shifts in C allocation to and within the mycobiont. Soil Biol Biochem 30:2001–2008

    Article  CAS  Google Scholar 

  58. Rouhier H, Read DJ (1999) Plant and fungal responses to elevated atmospheric CO2 in mycorrhizal seedlings of Betula pendula. Environ Exp Bot 42:231–241

    Article  Google Scholar 

  59. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  61. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  62. Drigo B, Kowalchuk GA, Yergeau E, Bezemer TM, Boschker HTS, Van Veen JA (2007) Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Glob Chang Biol 13:2396–2410

    Article  Google Scholar 

  63. Reichenbach H, Dworkin M (1992) The Myxobacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer Verlag, New York, pp 3416–3487

    Chapter  Google Scholar 

  64. Kopecky J, Kyselkova M, Omelka M, Cermak L, Novotna J, Grundmann GL, Moenne-Loccoz Y, Sagova-Mareckova M (2011) Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol Ecol 78:386–394

    Article  CAS  PubMed  Google Scholar 

  65. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  66. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Drigo B, Pijl AS, Duyts H, Kielak A, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, DeSantis TZ, Andersen GL, Williams AL, Hovenden MJ (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096

    Article  CAS  PubMed  Google Scholar 

  69. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  71. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Rukshana F, Butterly CR, Baldock JA, Tang C (2011) Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biol Fertil Soils 47:51–62

    Article  CAS  Google Scholar 

  73. Barekzai A, Mengel K (1993) Effect of microbial decomposition of mature leaves on soil pH. Z Pflanzenernähr Bodenkd 156:93–94

    Article  CAS  Google Scholar 

  74. Li Z-A, Zou B, Xia H-P, Ding Y-Z, Tan W-N, Fu S-L (2008) Role of low-molecule-weight organic acids and their salts in regulating soil pH. Pedosphere 18:137–148

    Article  CAS  Google Scholar 

  75. Ingelög T, Nohrstedt HÃ (1993) Ammonia formation and soil pH increase caused by decomposing fruitbodies of macrofungi. Oecologia 93:449–451

    Article  Google Scholar 

  76. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413

    Article  CAS  PubMed  Google Scholar 

  77. Buckley DH, Huangyutitham V, Nelson TA, Rumberger A, Thies JE (2006) Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 72:4522–4531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Winkelmann N, Harder J (2009) An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microbiol Methods 77:276–284

    Article  CAS  PubMed  Google Scholar 

  79. Gade D, Schlesner H, Glockner FO, Amann R, Pfeiffer S, Thomm A (2004) Identification of planctomycetes with order-, genus-, and strain-specific 16S rRNA-targeted probes. Microb Ecol 47:243–251

    Article  CAS  PubMed  Google Scholar 

  80. Sibanc N, Dumbrell AJ, Mandic-Mulec I, Macek I (2014) Impacts of naturally elevated soil CO2 concentrations on communities of soil archaea and bacteria. Soil Biol Biochem 68:348–356

    Article  CAS  Google Scholar 

  81. Esperschuetz J, Gattinger A, Buegger F, Lang H, Munch JC, Schloter M, Winkler JB (2009) A continuous labelling approach to recover photosynthetically fixed carbon in plant tissue and rhizosphere organisms of young beech trees (Fagus sylvatica L.) using 13C depleted CO2. Plant Soil 323:21–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the German Science Foundation (DFG) under the contract numbers SCHL 447/11-1, PO 362/19-1 and DA 1217/2-1. We also heartily thank Konny Galonska for nucleic acid extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schloter.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Principal component analysis of TRFLP profiles based on Hellinger transformed data from rhizosphere soil (RS) and root rhizosphere complex (RRC) associated with beech trees originating from NE-exposed and SW-exposed mountainous slopes grown under ambient and elevated CO2 concentrations (aCO2 and eCO2, respectively) after DNA extraction, amplification of 16S rRNA genes, and enzymatic restriction with MspI (n = 8). TRFs smaller 1 % of total peak height were excluded from analysis. (DOC 33 kb)

Fig. S2

Scheme of the experimental design. The sampling times where microbial community analysis was performed are highlighted in bold letters. (DOC 33 kb)

Table S1

(DOC 35 kb)

Table S2

(DOC 28 kb)

Table S3

(DOC 43 kb)

Table S4

(DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gschwendtner, S., Leberecht, M., Engel, M. et al. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions. Microb Ecol 69, 867–878 (2015). https://doi.org/10.1007/s00248-014-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0527-x

Keywords

Navigation