Skip to main content

Advertisement

Log in

Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675. doi:10.1007/s00253-011-3589-4

    Article  CAS  PubMed  Google Scholar 

  • Agulló L, Cámara B, Martínez P, Latorre V, Seeger M (2007) Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. FEMS Microbiol Lett 267:167–175. doi:10.1111/j.1574-6968.2006.00554.x

    Article  PubMed  Google Scholar 

  • Altimira F, Yáñez C, Bravo G, González M, Rojas L, Seeger M (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 12:193. doi:10.1186/1471-2180-12-193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • American Petroleum Institute, Petroleum HPV Testing Group (2010) Revised robust summary and test plan for kerosene/jet fuels. http://www.epa.gov/chemrtk/pubs/summaries/kerjetfc/c15020tc.htm. Accessed 20 Jan 2014

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715. doi:10.1021/es2013227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atlas R, Philp J (2005) Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM, Washington, DC

    Google Scholar 

  • Baboshin MA, Golovleva LA (2012) Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology 81:639–650. doi:10.1134/S0026261712060021

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418. doi:10.1038/368413a0

    Article  CAS  Google Scholar 

  • Bučková M, Godočíková J, Zámocký M, Polek B (2010) Screening of bacterial isolates from polluted soils exhibiting catalase and peroxidase activity and diversity of their responses to oxidative stress. Curr Microbiol 61:241–247. doi:10.1007/s00284-010-9601-x

    Article  PubMed  Google Scholar 

  • Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282. doi:10.1128/AEM.02896-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113. doi:10.1111/j.1462-2920.2011.02516.x

    Article  CAS  PubMed  Google Scholar 

  • Cámara B, Herrera C, González M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850. doi:10.1111/j.1462-2920.2004.00630.x

    Article  PubMed  Google Scholar 

  • Cámara B, Seeger M, González M, Standfuß-Gabisch C, Kahl S, Hofer B (2007) Generation by a widely applicable approach of a hybrid dioxygenase showing improved oxidation of polychlorobiphenyls. Appl Environ Microbiol 73:2682–2689. doi:10.1128/AEM.02523-06

    Article  PubMed Central  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287. doi:10.1073/pnas.0606924103

    Article  PubMed Central  PubMed  Google Scholar 

  • Chávez-Gómez B, Quintero R, Esparza-García F, Mesta-Howard AM, Zavala Díaz de la Serna F, Hernández-Rodríguez C, Gillén T, Poggi-Varaldo H, Barrera-Cortés J, Rodríguez-Vázquez R (2003) Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresour Technol 89:177–183. doi:10.1016/S0960-8524(03)00037-3

    Article  PubMed  Google Scholar 

  • Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265. doi:10.1016/S0968-0004(00)01562-0

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–185. doi:10.5661/bger-25-165

    Article  CAS  PubMed  Google Scholar 

  • Ding G-C, Heuer H, Zühlke S, Spiteller M, Pronk GJ, Heister K, Kögel-Knabner I, Smalla K (2010) Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 76:4765–4771. doi:10.1128/AEM.00047-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domínguez-Cuevas P, González-Pastor J-E, Marqués S, Ramos J-L, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991. doi:10.1074/jbc.M509848200

    Article  PubMed  Google Scholar 

  • Grace Liu P-W, Chang TC, Whang L-M, Kao C-H, Pan P-T, Cheng S-S (2011) Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. Int Biodeterior Biodegrad 65:1119–1127. doi:10.1016/j.ibiod.2011.09.002

    Article  CAS  Google Scholar 

  • Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009) Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458:367–370. doi:10.1038/nature07678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernández M, Jia Z, Conrad R, Seeger M (2011) Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiol Ecol 78:511–519. doi:10.1111/j.1574-6941.2011.01180.x

    Article  PubMed  Google Scholar 

  • Iwai S, Johnson T, Chai B, Hashsham S, Tiedje JM (2011) Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol 77:3551–3557. doi:10.1128/AEM.00331-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jørgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254. doi:10.1016/S0269-7491(99)00144-X

    Article  PubMed  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472. doi:10.1128/JB.01310-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kweon O, Kim S, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 1(2). doi:10.1128/mBio.00135-10

  • Labbé D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol Ecol 59:466–475. doi:10.1111/j.1574-6941.2006.00250.x

    Article  PubMed  Google Scholar 

  • Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465. doi:10.1016/j.jmb.2007.11.069

    Article  CAS  PubMed  Google Scholar 

  • Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439. doi:10.1038/nbt.2198

    Article  CAS  PubMed  Google Scholar 

  • Mackay D, Shiu WY, Ma KC, Lee SC (2006) Handbook of physical–chemical properties and environmental fate for organic chemicals. CRC, Boca Raton

    Google Scholar 

  • Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133. doi:10.1128/AEM.67.7.3127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092. doi:10.1128/AEM.69.6.3085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255:225–232. doi:10.1111/j.1574-6968.2005.00090.x

    Article  CAS  PubMed  Google Scholar 

  • Méndez V, Fuentes S, Hernández M, Morgante V, González M, Moore E, Seeger M (2010) Isolation of hydrocarbon-degrading heavy-metal-resistant bacteria from crude oil-contaminated soil in central Chile. J Biotechnol 150:S287

    Article  Google Scholar 

  • Méndez V, Agulló L, González M, Seeger M (2011) The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400. PLoS ONE 6:e17583. doi:10.1371/journal.pone.0017583

    Article  PubMed Central  PubMed  Google Scholar 

  • Morgante V, López-López A, Flores C, González M, González B, Vásquez M, Rosselló-Mora R, Seeger M (2010) Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils. FEMS Microbiol Ecol 71:114–126. doi:10.1111/j.1574-6941.2009.00790.x

    Article  CAS  PubMed  Google Scholar 

  • Namkoong W, Hwang E-Y, Park J-S, Choi J-Y (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31. doi:10.1016/S0269-7491(01)00328-1

    Article  CAS  PubMed  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93. doi:10.1038/ismej.2011.78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ní Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72:4078–4087. doi:10.1128/AEM.02969-05

    Article  PubMed Central  PubMed  Google Scholar 

  • Overwin H, González M, Méndez V, Seeger M, Wray V, Hofer B (2012) Dioxygenation of the biphenyl dioxygenation product. Appl Environ Microbiol 78:4529–4532. doi:10.1128/AEM.00492-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagnout C, Frache G, Poupin P, Maunit B, Muller JF, Ferard JF (2007) Isolation and characterization of a gene cluster in PAH degradation in Mycobacterium sp. strain SNP11: expression in Mycobacterium smegmatis mc2155. Res Microbiol 158:175–186. doi:10.1016/j.resmic.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  • Peng R-H, Xiong A-S, Xue Y, Fu X-Y, Gao F, Zhao W, Tian Y-S, Yao Q-H (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955. doi:10.1111/j.1574-6976.2008.00127.x

    Article  CAS  PubMed  Google Scholar 

  • Pèrez-Armendáriz B, Loera-Corral O, Fernández-Linares L, Esparza-García F, Rodríguez-Vázquez R (2004) Biostimulation of microorganisms from sugarcane bagasse pith for the removal of weathered hydrocarbon from soil. Lett Appl Microbiol 38:373–377. doi:10.1111/j.1472-765X.2004.01502.x

    Article  PubMed  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138. doi:10.1159/000121325

    Article  CAS  PubMed  Google Scholar 

  • Ponce BL, Latorre VK, González M, Seeger M (2011) Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400. Enzym Microb Technol 49:509–516. doi:10.1016/j.enzmictec.2011.04.021

    Article  CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490. doi:10.1111/j.1462-2920.2009.01948.x

    Article  CAS  PubMed  Google Scholar 

  • Roldán-Martín A, Esparza-García F, Calva-Calva G, Rodríguez-Vázquez R (2006) Effects of mixing low amounts of orange peel (Citrus reticulata) with hydrocarbon-contaminated soil in solid culture to promote remediation. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2373–2385. doi:10.1080/10934520600873548

    Article  PubMed  Google Scholar 

  • Roldán-Martín A, Calva-Calva G, Rojas-Avelizapa N, Díaz-Cervantes MD, Rodríguez-Vázquez R (2007) Solid culture amended with small amounts of raw coffee beans for the removal of petroleum hydrocarbon from weathered contaminated soil. Int Biodeterior Biodegrad 60:35–39. doi:10.1016/j.ibiod.2006.10.008

    Article  Google Scholar 

  • Röling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548. doi:10.1128/AEM.68.11.5537

    Article  PubMed Central  PubMed  Google Scholar 

  • Romero-Silva MJ, Méndez V, Agulló L, Seeger M (2013) Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. PLoS ONE 8:e56038. doi:10.1371/journal.pone.0056038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruberto L, Vazquez SC, Mac Cormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegrad 52:115–125. doi:10.1016/S0964-8305(03)00048-9

    Article  CAS  Google Scholar 

  • Saavedra M, Acevedo F, González M, Seeger M (2010) Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCB in soil. Appl Microbiol Biotechnol 87:1543–1554. doi:10.1007/s00253-010-2575-6

    Article  CAS  PubMed  Google Scholar 

  • Salminen JM, Tuomi PM, Jørgensen KS (2008) Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Appl Biochem Biotechnol 151(2–3):638–652. doi:10.1007/s12010-008-8275-3

    Article  CAS  PubMed  Google Scholar 

  • Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter F-J, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004. doi:10.1038/nbt1232

    Article  CAS  PubMed  Google Scholar 

  • Seeger M, Pieper D (2009) Genetics of biphenyl biodegradation and co-metabolism of PCBs. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids, and derived compounds, vol 2. Springer, Heidelberg, pp 1179–1199

    Google Scholar 

  • Seeger M, Timmis KN, Hofer B (1997) Bacterial pathways for the degradation of polychlorinated biphenyls. Mar Chem 58:327–333. doi:10.1016/S0304-4203(97)00059-5

    Article  CAS  Google Scholar 

  • Seeger M, Zielinski M, Timmis KN, Hofer B (1999) Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl Environ Microbiol 65:3614–3621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seeger M, Cámara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555. doi:10.1128/JB.183.12.3548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seeger M, González M, Cámara B, Muñoz L, Ponce E, Mejías L, Mascayano C, Vásquez Y, Sepúlveda-Boza S (2003) Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl Environ Microbiol 69:5045–5050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos J-L (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23:415–421. doi:10.1016/j.copbio.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  • Sei K, Sugimoto Y, Mori K, Maki H, Kohno T (2003) Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ Microbiol 5:517–522. doi:10.1046/j.1462-2920.2003.00447.x

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Li QX (2012) Mycobacterium aromativorans JS19b1T degrades phenanthrene through C-1,2, C-3,4 and C-9,10 dioxygenation pathways. Int Biodeterior Biodegrad 70:96–103. doi:10.1016/j.ibiod.2012.02.005

    Article  CAS  Google Scholar 

  • Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Kato N (2004) Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol 70:1385–1392. doi:10.1128/AEM.70.3.1385-1392.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe C (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479. doi:10.1016/j.mimet.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  • So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900. doi:10.1128/AEM.69.7.3892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Speight JG (2001) Handbook of petroleum analysis. Wiley-Interscience, New York

    Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332. doi:10.1128/AEM.00064-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS ONE 7:e40653. doi:10.1371/journal.pone.0040653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • US Federal Remediation Technologies Roundtable (2014) http://www.frtr.gov/matrix2/top_page.html. Accessed 20 Jan 2014

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. doi:10.1007/s00253-006-0748-0

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65. doi:10.1128/AEM.72.1.59

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Gestel K, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368. doi:10.1016/S0269-7491(03)00109-X

    Article  PubMed  Google Scholar 

  • Wang W, Shao Z (2012) Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl Microbiol Biotechnol 94:437–448. doi:10.1007/s00253-011-3818-x

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242. doi:10.1111/j.1462-2920.2010.02165.x

    Article  CAS  PubMed  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. doi:10.1007/s00253-007-1119-1

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari V, Labbé D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150. doi:10.1111/j.1574-6941.2002.tb00975.x

    CAS  PubMed  Google Scholar 

  • Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432. doi:10.1016/j.femsec.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. doi:10.1016/j.copbio.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267. doi:10.1128/AEM.01029-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS ONE 7:e30058. doi:10.1371/journal.pone.0030058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zielinski M, Kahl S, Standfuß-Gabisch C, Cámara B, Seeger M, Hofer B (2006) Generation of novel-substrate-accepting biphenyl dioxygenases through segmental random mutagenesis and identification of residues involved in enzyme specificity. Appl Environ Microbiol 72:2191–2199. doi:10.1128/AEM.72.3.2191-2199.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Conicyt PhD (SF, VM), Mecesup FMS0710 PhD (PA, SF), and Fulbright (SF) fellowships. MS acknowledges financial support of FONDECYT (1110992 and 1070507) (http://www.fondecyt.cl), Conicyt-BMBF, Center for Nanotechnology and Systems Biology (http://www.usm.cl), and USM (131342, 131109, 130948) (http://www.usm.cl) grants. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, S., Méndez, V., Aguila, P. et al. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98, 4781–4794 (2014). https://doi.org/10.1007/s00253-014-5684-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5684-9

Keywords

Navigation