Skip to main content
Log in

Cyanide bioremediation: the potential of engineered nitrilases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou Nader M (2012) Directed evolution of cyanide degrading enzymes. Doctoral dissertation Texas A&M University

  • Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv 21:501–511

    Article  CAS  PubMed  Google Scholar 

  • Alphey MS, Williams RA, Mottram JC, Coombs GH, Hunter WN (2003) The crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase: a three-domain architecture with a serine protease-like triad at the active site. J Biol Chem 278:48219–48227. doi:10.1074/jbc.M307187200

    Article  CAS  PubMed  Google Scholar 

  • Anderson PM, Little RM (1986) Kinetic properties of cyanase. Biochemistry 25(7):1621–1626

    Article  CAS  PubMed  Google Scholar 

  • Basile LJ, Willson RC, Sewell BT, Benedik MJ (2008) Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol 80:427–435. doi:10.1007/s00253-008-1559-2

    Article  CAS  PubMed  Google Scholar 

  • Belani KG, Singh H, Beebe DS, George P, Patterson SE, Nagasawa HT, Vince R (2012) Cyanide toxicity in juvenile pigs and its reversal by a new prodrug, sulfanegen sodium. Anesth Analg 114:956–961. doi:10.1213/ANE.0b013e31824c4eb5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bork P, Koonin EV (1994) A new family of carbon-nitrogen hydrolases. Protein Sci 3(8):1344–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botz MM (2000) Modeling of natural cyanide attenuation in tailings impoundments. Miner Mettal Proc 17:228–233

    CAS  Google Scholar 

  • Brenner M, Kim JG, Lee J, Mahon SB, Lemor D, Ahdout R, Boss GR, Blackledge W, Jann L, Nagasawa HT, Patterson SE (2010) Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity. Toxicol Appl Pharmacol 248:269–276. doi:10.1016/j.taap.2010.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderius SJ (1981) Determination of hydrocyanic acid and free cyanide in aqueous solution. Anal Chem 53:1472–1477. doi:10.1021/ac00232a040

    Article  CAS  Google Scholar 

  • Brysk MM, Corpe WA, Hankes LV (1969) Beta-cyanoalanine formation by Chromobacterium violaceum. J Bacteriol 97:322–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51–59. doi:10.1080/15216540701206859

    Article  CAS  PubMed  Google Scholar 

  • Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P (2008) Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa rhodanese. J Mol Microbiol Biotechnol 15:199–211. doi:10.1159/000121331

    Article  CAS  PubMed  Google Scholar 

  • Crum MA, Park JM, Mulelu AE, Sewell BT, Benedik MJ (2015a) Probing C-terminal interactions of the Pseudomonas stutzeri cyanide-degrading CynD protein. Appl Microbiol Biotechnol 99:3093–3102. doi:10.1007/s00253-014-6335-x

    Article  CAS  PubMed  Google Scholar 

  • Crum MA, Park JM, Sewell BT, Benedik MJ (2015b) C-terminal hybrid mutant of Bacillus pumilus cyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization. J Appl Microbiol 118:881–889. doi:10.1111/jam.12754

    Article  CAS  PubMed  Google Scholar 

  • Crum MA, Sewell BT, Benedik MJ (2016) Bacillus pumilus cyanide dihydratase mutants with higher catalytic activity. Front Microbiol 7:1264. doi:10.3389/fmicb.2016.01264

  • Cummings TF (2004) The treatment of cyanide poisoning. Occup Med (Lond) 54(2):82–85

    Article  CAS  Google Scholar 

  • Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater 163:1–11. doi:10.1016/j.jhazmat.2008.06.051

    Article  PubMed  Google Scholar 

  • Dent KC, Weber BW, Benedik MJ, Sewell BT (2009) The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat. Appl Microbiol Biotechnol 82:271–278. doi:10.1007/s00253-008-1735-4

    Article  CAS  PubMed  Google Scholar 

  • Devuyst EA, Conard BR, Vergunst R, Tandi B (1989) A cyanide removal process using sulfur dioxide and air. JOM 41:43–45. doi:10.1007/BF03220847

    Article  CAS  Google Scholar 

  • Dorr PK, Knowles CJ (1989) Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol Lett 60:289–294

    Article  CAS  Google Scholar 

  • Dunnill PM, Fowden L (1965) Enzymatic formation of beta-cyanoalanine from cyanide by Escherichia coli extracts. Nature 208:1206–1207

    Article  CAS  PubMed  Google Scholar 

  • Fernandes BCM, Mateo C, Kiziak C, Chmura A, Wacker J, van Rantwijk F, Stolz A, Sheldon RA (2006) Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal 348:2597–2603. doi:10.1002/adsc.200600269

    Article  CAS  Google Scholar 

  • Fernandez RF, Kunz DA (2005) Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate. J Bacteriol 187:6396–6402. doi:10.1128/jb.187.18.6396-6402.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez RF, Dolghih E, Kunz DA (2004) Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 70:121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry WE, Munch DC (1975) Hydrogen-cyanide detoxification by Gloeocercospora sorghi. Physiol Plant Pathol 7:23–33. doi:10.1016/0048-4059(75)90056-9

    Article  CAS  Google Scholar 

  • Gantzer CJ (1990) Biological degradation of cyanide by nitrogen-fixing cyanobacteria. U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Cincinnati, OH

    Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11. doi:10.1186/1475-2859-11-142

  • Gordon RD, Qiu W, Romanov V, Lam K, Soloveychik M, Benetteraj D, Battaile KP, Chirgadze YN, Pai EF, Chirgadze NY (2013) Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit branch of the nitrilase superfamily. J Biomol Struct Dyn 31:1057–1065. doi:10.1080/07391102.2012.719111

    Article  CAS  PubMed  Google Scholar 

  • Gracia R, Shepherd G (2004) Cyanide poisoning and its treatment. Pharmacotherapy 24:1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13. doi:10.1016/j.jhazmat.2009.11.038

    Article  CAS  PubMed  Google Scholar 

  • Hardy RW, Knight E Jr (1967) ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta 139:69–90

    Article  CAS  PubMed  Google Scholar 

  • Harris RE, Knowles CJ (1983a) Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J Gen Microbiol 129:1005–1011

    CAS  PubMed  Google Scholar 

  • Harris RE, Knowles CJ (1983b) The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen for growth. FEMS Microbiol Lett 20:337–341

    Article  CAS  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) Beta-cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123:1163–1171

  • Hook RH, Robinson WG (1964) Ricinine nitrilase. II. Purification and properties. J Biol Chem 239:4263–4267

    CAS  PubMed  Google Scholar 

  • Howden AJM, Jill Harrison C, Preston GM (2009) A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J 57(2):243–253. doi:10.1111/j.1365-313X.2008.03682.x

    Article  CAS  PubMed  Google Scholar 

  • Igvorsen K, Hojer-Pedersen B, Godtfredsen SE (1991) Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl Environ Microbiol 57:1783–1789

    Google Scholar 

  • Jandhyala D, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ (2003) CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies. Appl Environ Microbiol 69:4794–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jandhyala DM, Willson RC, Sewell BT, Benedik MJ (2005) Comparison of cyanide-degrading nitrilases. Appl Microbiol Biotechnol 68:327–335. doi:10.1007/s00253-005-1903-8

    Article  CAS  PubMed  Google Scholar 

  • Jenrich R, Trompetter I, Bak S, Olsen CE, Moller BL, Piotrowski M (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc Natl Acad Sci U S A 104:18848–18853. doi:10.1073/Pnas.0709315104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao CM, Liu JK, Lou HR, Lin CS, Chen SC (2003) Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Keusgen M, Kloock JP, Knobbe DT, Jünger M, Krest I, Goldbach M, Klein W, Schöning MJ (2004) Direct determination of cyanides by potentiometric biosensors. Sensors Actuators B Chem 103:380–385. doi:10.1016/j.snb.2004.04.067

    Article  CAS  Google Scholar 

  • Kimani SW, Agarkar VB, Cowan DA, Sayed MF, Sewell BT (2007) Structure of an aliphatic amidase from Geobacillus pallidus RAPc8. Acta Crystallogr D Biol Crystallogr 63(Pt 10):1048–1058. doi:10.1107/S090744490703836X

    Article  CAS  PubMed  Google Scholar 

  • Kiziak C, Stolz A (2009) Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 75:5592–5599. doi:10.1128/aem.00301-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knorre H, Griffiths A, Degussa A (1984) Cyanide detoxification with hydrogen peroxide using the Degussa process. Paper presented at the Conference on Cyanide and the Environment, Tucson Arizona, U S A

  • Kobayashi M, Goda M, Shimizu S (1999) Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. Biochem Biophys Res Commun 253:662–666

    Article  Google Scholar 

  • Kobayashi M, Komeda H, Yanaka N, Nagasawa T, Yamada H (1992) Nitrilase from Rhodococcus rhodochrous J1—sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267:20746–20751

    CAS  PubMed  Google Scholar 

  • Kovac C (2000) Cyanide spill threatens health in Hungary. BMJ 320:536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn DD, Young TC (2005) Photolytic degradation of hexacyanoferrate (II) in aqueous media: the determination of the degradation kinetics. Chemosphere 60:1222–1230. doi:10.1016/j.chemosphere.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Gerchman SE, Kycia H, Studier FW, Swaminathan S (2003) Crystal structure of a putative CN hydrolase from yeast. Proteins Struct Funct Genet 52:283–291. doi:10.1002/Prot.10417

    Article  CAS  PubMed  Google Scholar 

  • Kunz DA, Fernandez RF, Parab P (2001) Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase. Biochem Biophys Res Commun 287:514–518. doi:10.1006/bbrc.2001.5611

    Article  CAS  PubMed  Google Scholar 

  • Kunz DA, Nagappan O (1989) Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764. Appl Environ Microbiol 55:256–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz DA, Wang CS, Chen JL (1994) Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiology 140:1705–1712. doi:10.1099/13500872-140-7-1705

    Article  CAS  PubMed  Google Scholar 

  • Li J, Burgess BK, Corbin JL (1982) Nitrogenase reactivity: cyanide as substrate and inhibitor. Biochemistry 21:4393–4402. doi:10.1021/bi00261a031

    Article  CAS  PubMed  Google Scholar 

  • Lundgren S, Lohkamp B, Andersen B, Piskur J, Dobritzsch D (2008) The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly. J Mol Biol 377:1544–1559. doi:10.1016/j.jmb.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  • Macadam AM, Knowles CJ (1984) Purification and properties of β-cyano-l-alanine synthase from the cyanide-producing bacterium, Chromobacterium violaceum. Biochim Biophys Acta Protein Struct Mol Enzymol 786:123–132. doi:10.1016/0167-4838(84)90081-5

    Article  CAS  Google Scholar 

  • Mahadevan S, Thimann KV (1964) Nitrilase. II. Substrate specificity and possible mode of action. Arch Biochem Biophys 107:62–68

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Veselá AB, Rinágelová A, Chmátal M (2015) Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide. Appl Microbiol Biotechnol 99:8875–8882

    Article  PubMed  Google Scholar 

  • Materassi R, Balloni W, Florenzano G (1977) Cyanide reduction by nitrogenase in intact cells of Rhodopseudomonas gelatinose Molisch. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Zweite naturwissenschaftliche Abt: Allgemeine, landwirtschaftliche und technische Mikrobiologie 132:413–417

    Article  CAS  Google Scholar 

  • Meyers PR, Gokool P, Rawlings DE, Woods DR (1991) An efficient cyanide-degrading Bacillus pumilus strain. J Gen Microbiol 137:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Meyers PR, Rawlings DE, Woods DR, Lindsey GG (1993) Isolation and characterization of a cyanide dihydratase from Bacillus pumilus C1. J Bacteriol 175:6105–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels R, Corpe WA (1965) Cyanide formation by Chromobacterium violaceum. J Bacteriol 89:106–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiol 65:1199–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosher JB, Figueroa L (1996) Biological oxidation of cyanide: a viable treatment option for the minerals processing industry? Miner Eng 9:573–581. doi:10.1016/0892-6875(96)00044-1

    Article  CAS  Google Scholar 

  • Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G (2006) Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expr Purif 47:672–681. doi:10.1016/J.Pep.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  • Mundy BP, Liu FH, Strobel GA (1973) Alpha-aminobutyronitrile as an intermediate in cyanide fixation by Rhizoctonia solani. Can J Biochem 51:1440–1442

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem 267:138–144

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Struct Fold Des 8:729–737. doi:10.1016/S0969-2126(00)00160-X

    Article  CAS  Google Scholar 

  • Ogunlabi OO, Agboola FK (2007) A soluble beta-cyanoalanine synthase from the gut of the variegated grasshopper Zonocerus variegatus (L.) Insect Biochem Mol Biol 37:72–79. doi:10.1016/j.ibmb.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • O'Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes - a comparative study. J Appl Microbiology 95(6):1161-1174

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:reviews0001.1–reviews0001.9

  • Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Croce CM, Brenner C (2000) Crystal structure of the worm NitFhit Rosetta stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol 10:907–917. doi:10.1016/S0960-9822(00)00621-7

    Article  CAS  PubMed  Google Scholar 

  • Padmaja G, Balagopal C (1985) Cyanide degradation by Rhizopus oryzae. Can J Microbiol 31:663–669. doi:10.1139/m85-126

    Article  CAS  Google Scholar 

  • Park JM, Mulelu A, Sewell BT, Benedik MJ (2016) Probing an interfacial surface in the cyanide dihydratase from Bacillus pumilus, a spiral forming nitrilase. Front Microbiol 6:1479. doi:10.3389/fmicb.2015.01479

    Article  PubMed  PubMed Central  Google Scholar 

  • Piotrowski M, Schonfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621. doi:10.1074/jbc.M007890200

    Article  CAS  PubMed  Google Scholar 

  • Poole CJ, Kind PR (1986) Deficiency of thiosulphate sulphurtransferase (rhodanese) in Leber’s hereditary optic neuropathy. Br Med J 292:1229–1230

    Article  CAS  Google Scholar 

  • Porter N, Knowles CJ (1979) Cyanide-resistant growth in Citrobacter Freundii and other Enterobacteriaceae. FEMS Microbiol Lett 5:323–326. doi:10.1111/j.1574-6968.1979.tb03331.x

    Article  CAS  Google Scholar 

  • Qian D, Jiang L, Lu L, Wei C, Li Y (2011) Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS One 6:e18300. doi:10.1371/journal.pone.0018300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico M, Benito G, Salgueiro AR, Diez-Herrero A, Pereira HG (2008) Reported tailings dam failures: a review of the European incidents in the worldwide context. J Hazard Mater 152:846–852. doi:10.1016/j.jhazmat.2007.07.050

    Article  CAS  PubMed  Google Scholar 

  • Ritcey GM (2005) Tailings management in gold plants. Hydrometallurgy 78:3–20. doi:10.1016/j.hydromet.2005.01.001

    Article  CAS  Google Scholar 

  • Robey H (2004) Thermal hydrolysis of cyanide. Pollut Eng 36:22

    CAS  Google Scholar 

  • Rodgers PB, Knowles CJ (1978) Cyanide production and degradation during growth of Chromobacterium violaceum. Microbiology 108:261–267. doi:10.1099/00221287-108-2-261

    CAS  Google Scholar 

  • Sewell BT, Berman MN, Meyers PR, Jandhyala D, Benedik MJ (2003) The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Sewell BT, Thuku RN, Zhang X, Benedik MJ (2005) Oligomeric structure of nitrilases: effect of mutating interfacial residues on activity. Ann N Y Acad Sci 1056:153–159

    Article  CAS  PubMed  Google Scholar 

  • Soriano-Maldonado P, Isabel Martinez-Gomez A, Andujar-Sanchez M, Neira JL, Maria Clemente-Jimenez J, Las Heras-Vazquez FJ, Rodriguez-Vico F, Martinez-Rodriguez S (2011) Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microbiol 77:5761–5769. doi:10.1128/aem.00312-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC (1992) Mechanistic and structural studies on Rhodococcus ATCC-39484 nitrilase. Biotechnol Appl Biochem 15:283–302

    CAS  PubMed  Google Scholar 

  • Stuehr J, Yeager E, Sachs T, Hovorka F (1963) Ultrasonic investigation of the rate of hydrolysis of potassium cyanide. J Chem Phys 38:587–593. doi:10.1063/1.1733708

    Article  CAS  Google Scholar 

  • Thimann KV, Mahadevan S (1964) Nitrilase. I. Occurrence, preparation and general properties of the enzyme. Arch Biochem Biophys 105:133–141

    Article  CAS  PubMed  Google Scholar 

  • Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727. doi:10.1111/j.1365-2672.2008.03941.x

    Article  CAS  PubMed  Google Scholar 

  • Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–2108. doi:10.1111/j.1742-4658.2007.05752.x

    Article  CAS  PubMed  Google Scholar 

  • Vejvoda V, Kaplan O, Bezouska K, Pompach P, Sulc M, Cantarella M, Benada O, Uhnakova B, Rinagelova A, Lutz-Wahl S, Fischer L, Kren V, Martinkova L (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B Enzym 50:99–106. doi:10.1016/J.Molcatb.2007.09.006

    Article  CAS  Google Scholar 

  • Vogel SN, Sultan TR, Ten Eyck RP (1981) Cyanide poisoning. Clin Toxicol 18:367–383. doi:10.3109/15563658108990043

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Kunz DA, Venables BJ (1996) Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 62:2195–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Watermeyer JM, Mulelu AE, Sewell BT, Benedik MJ (2012) Engineering pH-tolerant mutants of a cyanide dihydratase. Appl Microbiol Biotechnol 94:131–140. doi:10.1007/s00253-011-3620-9

    Article  CAS  PubMed  Google Scholar 

  • Wang WC, Hsu WH, Chien FT, Chen CY (2001) Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J Mol Biol 306:251–261. doi:10.1006/jmbi.2000.4380

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Yano K, Ikebukuro K, Karube I (1998) Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology 144:1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Weber BW, Kimani SW, Varsani A, Cowan DA, Hunter R, Venter GA, Gumbart JC, Sewell BT (2013) The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning. J Biol Chem 288:28514–28523. doi:10.1074/jbc.M113.503284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson DS, Dent KC, Weber BW, Varsani A, Frederick J, Thuku RN, Cameron RA, van Heerden JH, Cowan DA, Sewell BT (2010) Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8. Appl Microbiol Biotechnol 88:143–153. doi:10.1007/S00253-010-2734-9

    Article  CAS  PubMed  Google Scholar 

  • Woodward JD (2011) The relationship between structure and specificity in the plant nitrilases. Doctoral dissertation, University of Cape Town

  • Woodward JD, Weber BW, Scheffer MP, Benedik MJ, Hoenger A, Sewell BT (2008) Helical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi. J Struct Biol 161:111–119. doi:10.1016/J.Jsb.2007.09.019

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Yin B, Wang C, Jiang SQ, Wang HL, Yuan YA, Wei DZ (2014) Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Synechocystis sp PCC6803. J Struct Biol 188:93–101. doi:10.1016/j.jsb.2014.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Benedik.

Ethics declarations

Funding

This work was supported by the Welch Foundation (A1310), the Texas Hazardous Waste Research Center (513TAM0032H), and the National Research Foundation of South Africa.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.M., Trevor Sewell, B. & Benedik, M.J. Cyanide bioremediation: the potential of engineered nitrilases. Appl Microbiol Biotechnol 101, 3029–3042 (2017). https://doi.org/10.1007/s00253-017-8204-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8204-x

Keywords

Navigation