Skip to main content

Advertisement

Log in

Impacts from Above-Ground Activities in the Eagle Ford Shale Play on Landscapes and Hydrologic Flows, La Salle County, Texas

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We assess the spatial and geomorphic fragmentation from the recent Eagle Ford Shale play in La Salle County, Texas, USA. Wells and pipelines were overlaid onto base maps of land cover, soil properties, vegetation assemblages, and hydrologic units. Changes to continuity of different ecoregions and supporting landscapes were assessed using the Landscape Fragmentation Tool (a third-party ArcGIS extension) as quantified by land area and continuity of core landscape areas (i.e., those degraded by “edge effects”). Results show decreases in core areas (8.7 %; ~33,290 ha) and increases in landscape patches (0.2 %; ~640 ha), edges (1.8 %; ~6940 ha), and perforated areas (4.2 %; ~16230 ha). Pipeline construction dominates landscape disturbance, followed by drilling and injection pads (85, 15, and 0.03 % of disturbed area, respectively). An increased potential for soil loss is indicated, with 51 % (~5790 ha) of all disturbance regimes occurring on soils with low water-transmission rates (depth to impermeable layer less than 50 cm) and a high surface runoff potential (hydrologic soil group D). Additionally, 88 % (~10,020 ha) of all disturbances occurred on soils with a wind erodibility index of approximately 19 kt/km2/year (0.19 kt/ha/year) or higher, resulting in an estimated potential of 2 million tons of soil loss per year. Results demonstrate that infrastructure placement is occurring on soils susceptible to erosion while reducing and splitting core areas potentially vital to ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alados CL, Pueyo Y, Escós J, Andujar A (2009) Effects of the spatial pattern of disturbance on the patch-occupancy dynamics of juniper–pine open woodland. Ecol Model 220:1544–1550. doi:10.1016/j.ecolmodel.2009.03.029

    Article  Google Scholar 

  • Alados CL, Puigdefábregas J, Martínez-Fernández J (2011) Ecological and socio-economical thresholds of land and plant-community degradation in semi-arid Mediterranean areas of southeastern Spain. J Arid Environ 75:1368–1376. doi:10.1016/j.jaridenv.2010.12.004

    Article  Google Scholar 

  • Albrecht S, Hinkle R, Nathanson E, et al (2000) Direct relevance to the natural gas industry of the habitat fragmentation/biodiversity issue resulting from the construction of new pipelines: Topical Report. Gas Research Institute, Chicago, IL

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Bi X, Wang B, Lu Q (2011) Fragmentation effects of oil wells and roads on the Yellow River Delta, North China. Ocean Coast Manag 54:256–264. doi:10.1016/j.ocecoaman.2010.12.005

    Article  Google Scholar 

  • Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH (2014) Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ Sci Technol 48:11034–11047. doi:10.1021/es5020482

    Article  CAS  Google Scholar 

  • Buchanan CB, Beck JL, Bills TE, Miller SN (2014) Seasonal resource selection and distributional response by Elk to development of a natural gas field. Rangel Ecol Manag 67:369–379. doi:10.2111/REM-D-13-00136.1

    Article  Google Scholar 

  • Burnett DB, McDowell J, Scott JB, Dolan C (2011) Field site testing of low impact oil field access roads: reducing the environmental footprint in desert ecosystems. In: SPE Americas E&P health, safety, security, and environmental conference, Houston. Society of Petroleum Engineers. SPE 142139, 10. doi:10.2118/142139-MS

  • Chas-Amil ML, Touza J, García-Martínez E (2013) Forest fires in the wildland–urban interface: a spatial analysis of forest fragmentation and human impacts. Appl Geogr 43:127–137. doi:10.1016/j.apgeog.2013.06.010

    Article  Google Scholar 

  • Chen M, Rowland JC, Wilson CJ, Altmann GL, Brumby SP (2012) Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats, Alaska. Hydrol Process 28:837–852. doi:10.1002/hyp.9642

    Article  CAS  Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, p 412

    Google Scholar 

  • DellaSala DA, Martin A, Spivak R, Schulke T, Bird B, Criley M, van Daalen C, Kreilick J, Brown R, Aplet G (2003) A citizen’s call for ecological forest restoration principles and criteria. Ecol Restor 21:14–23

    Article  Google Scholar 

  • Diffendorfer JE, Compton RW (2014) Land cover and topography affect the land transformation caused by wind facilities. PLoS One 9:e88914. doi:10.1371/journal.pone.0088914

    Article  Google Scholar 

  • Driskill B, Suurmeyer N, Rilling-Hall S, Govert A, Garbowicz A, Shell Exploration and Production Company (2012) Reservoir description of the subsurface Eagle Ford Formation, Maverick Basin Area, South Texas, USA. In: SPE Europec/EAGE annual conference, Copenhagen. Society of Petroleum Engineers, SPE 154528, 23. doi:10.2118/154528-MS

  • Drohan PJ, Brittingham M (2012) Topographic and soil constraints to shale-gas development in the Northcentral Appalachians. Soil Sci Soc Am J 76:1696–1706. doi:10.2136/sssaj2012.0087

    Article  CAS  Google Scholar 

  • Drohan PJ, Brittingham M, Bishop J, Yoder K (2012) Early trends in landcover change and forest fragmentation due to shale-gas development in Pennsylvania: a potential outcome for the Northcentral Appalachians. Environ Manag 49:1061–1075. doi:10.1007/s00267-012-9841-6

    Article  CAS  Google Scholar 

  • Dukes RT (2014) Eagle Ford Shale Overview. Eagle Ford Shale: news, MarketPlace, Jobs. KED Interests, LLC. http://eaglefordshale.com/. Accessed 04 March 2014

  • Entrekin S, Evans-White M, Johnson B, Hagenbuch E (2011) Rapid expansion of natural gas development poses a threat to surface waters. Front Ecol Environ 9:503–511. doi:10.1890/110053

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  • Gong X, McVay DA, Ayers WB, Tian Y, Lee J (2013) Assessment of Eagle Ford Shale oil and gas resources. Society of Petroleum Engineers. In: SPE unconventional resources conference, SPE-167241-MS, p 26. doi:10.2118/167241-MS

  • Goodrich LJ, Brittingham M, Bishop JA, Barber P (2004) Wildlife habitat in Pennsylvania: past, present, and future. Pennsylvania Department of Conservation and Natural Resources, Philadelphia, p 236

    Google Scholar 

  • Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334

    Google Scholar 

  • Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J (2007) Completion of the 2001 national land cover database for the conterminous United States. Photogramm Eng Remote Sens 73:337–341

    Google Scholar 

  • Horizon Systems Corporation (2013) NHDPlus Home. http://www.horizon-systems.com/NHDPlus/index.php. Accessed 02 Oct 2013

  • Horta e Costa B, Batista MI, Gonçalves L, Erzini K, Caselle JE, Cabral HN, Gonçalves EJ (2013) Fishers’ behaviour in response to the implementation of a marine protected area. PLoS One 8:e65057. doi:10.1371/journal.pone.0065057

    Article  CAS  Google Scholar 

  • Howell CA, Dijak WD, Thompson FR (2006) Landscape context and selection for forest edge by breeding brown-headed cowbirds. Landsc Ecol 22:273–284. doi:10.1007/s10980-006-9022-1

    Article  Google Scholar 

  • Information Handling Services, Inc. (2013) IHS: information, analytics, expertise. http://www.ihs.com/index.aspx. Accessed 23 May 2013

  • John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ Res Lett 4:045010. doi:10.1088/1748-9326/4/4/045010

    Article  Google Scholar 

  • Johnson N (2010) Pennsylvania energy impacts assessment. The Nature Conservancy, Harrisburg, PA. http://www.nature.org/media/pa/tnc_energy_analysis.pdf. Accessed 10 March 2014

  • Kalyn Bogard HJ, Davis SK (2014) Grassland songbirds exhibit variable responses to the proximity and density of natural gas wells. J Wildl Manag 78:471–482. doi:10.1002/jwmg.684

    Article  Google Scholar 

  • Kiviat E (2013) Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales. Ann N Y Acad Sci 1286:1–14. doi:10.1111/nyas.12146

    Article  Google Scholar 

  • Krauss RF (2013) Addressing well and field infrastructure siting challenges in the Wetlands and Streams of the Haynesville, Marcellus, Utica, and Eagle Ford Shale Plays. In: SPE Americas E&P health, safety, security and environmental conference, Society of Petroleum Engineers, p 8

  • Linke J, Franklin SE, Huettmann F, Stenhouse GB (2005) Seismic cutlines, changing landscape metrics and grizzly bear landscape use in Alberta. Landsc. Ecol 20:811–826. doi:10.1007/s10980-005-0066-4

    Article  Google Scholar 

  • Lowe CH (1985) Amphibians and reptiles in Southwest riparian ecosystems. U.S. Forest Service General Technical Report RM-120. In: First North American Riparian conference, Tucson, p 3

  • Martin R, Baihly J, Malpani R, Lindsay G, Atwood WK, Schlumberger (2011) Understanding production form Eagle Ford-Austin Chalk system. Soc Pet Eng 145117:28

    Google Scholar 

  • McGarigal K, Cushman S, Regan, C (2005) Quantifying terrestrial habitat loss and fragmentation: a protocol: US For Serv Gen Tech Repl RM-GTR, p 115

  • Mitchell A (2005) The ESRI guide to GIS analysis: spatial measurements and statistics. ESRI Press, Redlands, p 252

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  CAS  Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc Ecol 19:435–455

    Article  Google Scholar 

  • Niu X, Duiker SW (2006) Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For Ecol Manag 223:415–427. doi:10.1016/j.foreco.2005.12.044

    Article  Google Scholar 

  • Olmstead SM, Muehlenbachs LA, Shih J-S, Chu Z, Krupnick AJ (2013) Shale gas development impacts on surface water quality in Pennsylvania. Proc Natl Acad Sci 110:4962–4967. doi:10.1073/pnas.1213871110

    Article  CAS  Google Scholar 

  • Pack W (2012) The years of Eagle Ford expected to be a sweet 16 at least. Houston Chronicle 2. http://www.chron.com/business/energy/article/The-years-of-Eagle-Ford-expected-to-be-a-sweet-16-3920669.php. Accessed 30 April 2014

  • Pardini R, de Arruda Bueno A, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666. doi:10.1371/journal.pone.0013666

    Article  Google Scholar 

  • Parent J, Hurd JD (2007) Landscape Fragmentation Tool v 2.0. The University of Connecticut, Center for Land Use Education and Research. http://clear.uconn.edu/tools/lft/lft2/index.htm. Accessed 22 Sep 2013

  • Porter JR, Howell FM, Mason PB, Blanchard TC (2009) Existing biomass infrastructure and theoretical potential biomass production in the US. J Maps 5:206–218. doi:10.4113/jom.2009.1067

    Article  Google Scholar 

  • Railroad Commission of Texas (2013) Pipelines Shapefile dataset. http://www.rrc.state.tx.us/aboutus/resource-center/research/data-sets-available-for-purchase/digital-map-data/. Accessed June 2013

  • Railroad Commission of Texas (2014) http://www.rrc.state.tx.us/. Accessed 03 April 2014

  • Ravi S, D’Odorico P, Breshears DD, Field JP, Goudie AS, Huxman TE, Li J, Okin GS, Swap RJ, Thomas AD, Whicker JJ, Zobeck TM (2011) Aeolian processes and the biosphere. Rev Geophys 49:RG3001. doi:10.1029/2010RG000328

    Article  Google Scholar 

  • Roberts SA, Hall GB, Calamai PH (2000) Analysing forest fragmentation using spatial autocorrelation, graphs and GIS. Int J Geogr Inf Sci 14:185–204

    Article  Google Scholar 

  • Robson BJ, Chester ET, Austin CM (2011) Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Mar Freshw Res 62:801–810

    Article  CAS  Google Scholar 

  • Saiz H, Alados CL (2011) Effect of Stipa tenacissima L. on the structure of plant co-occurrence networks in a semi-arid community. Ecol Res 26:595–603. doi:10.1007/s11284-011-0818-3

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Nicot J-P (2014) Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays? Environ Res Lett 9:124011. doi:10.1088/1748-9326/9/12/124011

    Article  Google Scholar 

  • Skousen JG, Johnson CD, Garbutt K (1994) Natural revegetation of 15 abandoned mine land sites in West Virginia. J Environ Qual 23:1224–1230. doi:10.2134/jeq1994.00472425002300060015x

    Article  CAS  Google Scholar 

  • Smith FS, Lloyd-Reilley J, Ocumpaugh WR (2010) South Texas natives: a collaborative regional effort to meet restoration needs in South Texas. Nativ Plants J 11:252–268

    Article  Google Scholar 

  • Soil Survey Staff (1993) Soil survey manual. Agric. Handbook No. 18, USDA-NRCS, U.S. Gov. Print. Office, Washington, DC

  • Soil Survey Staff (20130) Natural Resources Conservation Service, United States Department of Agriculture. http://websoilsurvey.nrcs.usda.gov/. Accessed 21 June 2013

  • Svobodová J, Kreisinger J, Šálek M, Koubová M, Albrecht T (2010) Testing mechanistic explanations for mammalian predator responses to habitat edges. Eur J Wildl Res 57:467–474. doi:10.1007/s10344-010-0455-0

    Article  Google Scholar 

  • Thuot K (2014) On the launch pad: the rise of pad drilling. Drilling info. http://info.drillinginfo.com/launch-pad-rise-pad-drilling/. Accessed 03 April 2014

  • TPWD (Texas Parks and Wildlife Department) (2013) Voluntary conservation practices: balancing wildlife conservation and oil and gas development in the Eagle Ford Shale region, p 4

  • Tunstall T, Oyakawa J, Roberts S, Eid H, Abalos R, Wang T, Calderon E, Melara K (2013) Economic impact of the Eagle Ford Shale. The University of Texas at San Antonio, Institute for Economic Development, Center for Community and Business Research, San Antonio, p 88

    Google Scholar 

  • United States Geological Survey (2013) USGS National elevation dataset. http://ned.usgs.gov/. Accessed 6 Jun 2013

  • U.S. Department of Agriculture Aerial Photography Field Office (2012) National agriculture imagery program (NAIP). http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prod&topic=landing. Downloaded June 2013

  • U.S. Government Accountability Office (2012) Oil and gas: information on shale resources, development, and environmental and public health risks. GAO-12-732 70, p 65

  • USDA (2009) Hydrologic soil groups. Chapter 7, Part 630. Hydrology. National engineering handbook. City. http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=22526.wba. 13

  • USDA/NRCS (2014) National Geospatial Center of Excellence. http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/ngce/. Accessed 21 June 2013

  • USDA/NRCS, National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail//?cid=nrcs142p2_054242. Accessed 12 Dec 2014

  • Vogt P, Riitters KH, Estreguil C, Kozak J, Wade TG, Wickham JD (2006) Mapping spatial patterns with morphological image processing. Landsc Ecol 22:171–177. doi:10.1007/s10980-006-9013-2

    Article  Google Scholar 

  • Wachal DJ, Banks KE, Hudak PF, Harmel RD (2009) Modeling erosion and sediment control practices with RUSLE 2.0: a management approach for natural gas well sites in Denton County, TX, USA. Environ Geol 56:1615–1627. doi:10.1007/s00254-008-1259-3

    Article  Google Scholar 

  • Wu J (2009) Ecological dynamics in fragmented landscapes. In: Levin SA (ed) Princeton guide to ecology. Princeton University Press, Princeton, pp 438–444

    Google Scholar 

Download references

Acknowledgments

Funding for this project was made available by the State of Texas Advanced Resource Recovery (STARR) program. We appreciate the support of the Railroad Commission of Texas, which provided data on locations of pipelines. We thank Stephanie Jones and Justin Perry, who helped edit the manuscript, and we thank the reviewers who helped improve it. Publication was approved by the Director, Bureau of Economic Geology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Young.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, J.P., Abolt, C.J. & Young, M.H. Impacts from Above-Ground Activities in the Eagle Ford Shale Play on Landscapes and Hydrologic Flows, La Salle County, Texas. Environmental Management 55, 1262–1275 (2015). https://doi.org/10.1007/s00267-015-0492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0492-2

Keywords

Navigation