Skip to main content

Advertisement

Log in

Cognitive and fine motor deficits in a pediatric sickle cell disease cohort of mixed ethnic origin

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Cerebrovascular disease is an important feature of pediatric sickle cell disease (SCD) and may lead to cognitive and motor impairment. Our cross-sectional study examined the incidence and severity of these impairments in a pediatric cohort without clinical cerebrovascular events from Berlin of mixed ethnic origin. Thirty-two SCD patients (mean age 11.14 years, range 7.0–17.25 years; males 14) were evaluated for full-scale intelligence (IQ) (German version WISC-III), fine motor function (digital writing tablet), and executive function (planning, attention, working memory, and visual-spatial abilities) with the Amsterdam Neuropsychological Tasks (ANT) program and the Tower of London (ToL). Data on clinical risk factors were retrieved from medical records. Full-scale IQ of patients was preserved, whereas performance IQ was significantly reduced (91.19 (SD 12.17) d = 0.7, p = 0.007). SCD patients scored significantly lower than healthy peers when tested for executive and fine motor functions, e.g., planning time in the ToL (6.73 s (SD 3.21) vs. 5.9 s in healthy peers (SD 2.33), d = 0.5, p = <0.001) and frequency on the writing tablet (mean z score −0.79, d = 0.7, p < 0.001). No clinical risk factors were significantly associated with incidence and severity of cognitive and motor deficits. Despite the preservation of full-scale IQ, our SCD cohort of mixed origin exhibited inferior executive abilities and reduced fine motor skills. Our study is limited by the small size of our cohort as well as the lack for control of sociodemographic and socioeconomic factors modulating higher functions but highlights the need for early screening, prevention, and specific interventions for these deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinberg MH, Sebastiani P (2012) Genetic modifiers of sickle cell disease. Am J Hematol 87(8):795–803. doi:10.1002/ajh.23232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, Wethers DL, Pegelow CH, Gill FM (1998) Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 91(1):288–294

    CAS  PubMed  Google Scholar 

  3. Pegelow CH, Macklin EA, Moser FG, Wang WC, Bello JA, Miller ST, Vichinsky EP, DeBaun MR, Guarini L, Zimmerman RA, Younkin DP, Gallagher DM, Kinney TR (2002) Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease. Blood 99(8):3014–3018

    Article  CAS  PubMed  Google Scholar 

  4. Moser FG, Miller ST, Bello JA, Pegelow CH, Zimmerman RA, Wang WC, Ohene-Frempong K, Schwartz A, Vichinsky EP, Gallagher D, Kinney TR (1996) The spectrum of brain MR abnormalities in sickle-cell disease: a report from the Cooperative Study of Sickle Cell Disease. AJNR Am J Neuroradiol 17(5):965–972

    CAS  PubMed  Google Scholar 

  5. Debaun MR, Derdeyn CP, McKinstry RC 3rd (2006) Etiology of strokes in children with sickle cell anemia. Ment Retard Dev Disabil Res Rev 12(3):192–199. doi:10.1002/mrdd.20118

    Article  PubMed  Google Scholar 

  6. Armstrong FD, Thompson RJ Jr, Wang W, Zimmerman R, Pegelow CH, Miller S, Moser F, Bello J, Hurtig A, Vass K (1996) Cognitive functioning and brain magnetic resonance imaging in children with sickle cell disease. Neuropsychology Committee of the Cooperative Study of Sickle Cell Disease. Pediatrics 97(6 Pt 1):864–870

    CAS  PubMed  Google Scholar 

  7. Quinn CT, McKinstry RC, Dowling MM, Ball WS, Kraut MA, Casella JF, Dlamini N, Ichord RN, Jordan LC, Kirkham FJ, Noetzel MJ, Roach ES, Strouse JJ, Kwiatkowski JL, Hirtz D, DeBaun MR (2013) Acute silent cerebral ischemic events in children with sickle cell anemia. JAMA Neurol 70(1):58–65. doi:10.1001/jamaneurol.2013.576

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schatz J, Finke RL, Kellett JM, Kramer JH (2002) Cognitive functioning in children with sickle cell disease: a meta-analysis. J Pediatr Psychol 27(8):739–748

    Article  PubMed  Google Scholar 

  9. Wang W, Enos L, Gallagher D, Thompson R, Guarini L, Vichinsky E, Wright E, Zimmerman R, Armstrong FD (2001) Neuropsychologic performance in school-aged children with sickle cell disease: a report from the Cooperative Study of Sickle Cell Disease. J Pediatr 139(3):391–397. doi:10.1067/mpd.2001.116935

    Article  CAS  PubMed  Google Scholar 

  10. Noll RB, Stith L, Gartstein MA, Ris MD, Grueneich R, Vannatta K, Kalinyak K (2001) Neuropsychological functioning of youths with sickle cell disease: comparison with non-chronically ill peers. J Pediatr Psychol 26(2):69–78

    Article  CAS  PubMed  Google Scholar 

  11. Bernaudin F, Verlhac S, Freard F, Roudot-Thoraval F, Benkerrou M, Thuret I, Mardini R, Vannier JP, Ploix E, Romero M, Casse-Perrot C, Helly M, Gillard E, Sebag G, Kchouk H, Pracros JP, Finck B, Dacher JN, Ickowicz V, Raybaud C, Poncet M, Lesprit E, Reinert PH, Brugieres P (2000) Multicenter prospective study of children with sickle cell disease: radiographic and psychometric correlation. J Child Neurol 15(5):333–343

    Article  CAS  PubMed  Google Scholar 

  12. Watkins KE, Hewes DK, Connelly A, Kendall BE, Kingsley DP, Evans JE, Gadian DG, Vargha-Khadem F, Kirkham FJ (1998) Cognitive deficits associated with frontal-lobe infarction in children with sickle cell disease. Dev Med Child Neurol 40(8):536–543

    Article  CAS  PubMed  Google Scholar 

  13. Knight S, Singhal A, Thomas P, Serjeant G (1995) Factors associated with lowered intelligence in homozygous sickle cell disease. Arch Dis Child 73(4):316–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goonan BT, Goonan LJ, Brown RT, Buchanan I, Eckman JR (1994) Sustained attention and inhibitory control in children with sickle cell syndrome. Arch Clin Neuropsychol 9(1):89–104

    Article  CAS  PubMed  Google Scholar 

  15. Wasserman AL, Wilimas JA, Fairclough DL, Mulhern RK, Wang W (1991) Subtle neuropsychological deficits in children with sickle cell disease. Am J Pediatr Hematol Oncol 13(1):14–20

    Article  CAS  PubMed  Google Scholar 

  16. Swift AV, Cohen MJ, Hynd GW, Wisenbaker JM, McKie KM, Makari G, McKie VC (1989) Neuropsychologic impairment in children with sickle cell anemia. Pediatrics 84(6):1077–1085

    CAS  PubMed  Google Scholar 

  17. Fowler MG, Whitt JK, Lallinger RR, Nash KB, Atkinson SS, Wells RJ, McMillan C (1988) Neuropsychologic and academic functioning of children with sickle cell anemia. J Dev Behav Pediatr 9(4):213–220

    Article  CAS  PubMed  Google Scholar 

  18. Cancio MI, Helton KJ, Schreiber JE, Smeltzer MP, Kang G, Wang WC (2015) Silent cerebral infarcts in very young children with sickle cell anaemia are associated with a higher risk of stroke. Br J Haematol 171(1):120–129. doi:10.1111/bjh.13525

    Article  PubMed  Google Scholar 

  19. Kawadler JM, Clayden JD, Clark CA, Kirkham FJ (2016) Intelligence quotient in paediatric sickle cell disease: a systematic review and meta-analysis. Dev Med Child Neurol 58(7):672–679. doi:10.1111/dmcn.13113

    Article  PubMed  Google Scholar 

  20. Brown RT, Davis PC, Lambert R, Hsu L, Hopkins K, Eckman J (2000) Neurocognitive functioning and magnetic resonance imaging in children with sickle cell disease. J Pediatr Psychol 25(7):503–513

    Article  CAS  PubMed  Google Scholar 

  21. Brandling-Bennett EM, White DA, Armstrong MM, Christ SE, DeBaun M (2003) Patterns of verbal long-term and working memory performance reveal deficits in strategic processing in children with frontal infarcts related to sickle cell disease. Dev Neuropsychol 24(1):423–434. doi:10.1207/s15326942dn2401_01

    Article  PubMed  Google Scholar 

  22. Schatz J, Brown RT, Pascual JM, Hsu L, DeBaun MR (2001) Poor school and cognitive functioning with silent cerebral infarcts and sickle cell disease. Neurology 56(8):1109–1111

    Article  CAS  PubMed  Google Scholar 

  23. Steen RG, Reddick WE, Mulhern RK, Langston JW, Ogg RJ, Bieberich AA, Kingsley PB, Wang WC (1998) Quantitative MRI of the brain in children with sickle cell disease reveals abnormalities unseen by conventional MRI. J Magn Reson Imaging 8(3):535–543

    Article  CAS  PubMed  Google Scholar 

  24. Colombatti R, Lucchetta M, Montanaro M, Rampazzo P, Ermani M, Talenti G, Baracchini C, Favero A, Basso G, Manara R, Sainati L (2016) Cognition and the default mode network in children with sickle cell disease: a resting state functional MRI study. PLoS One 11(6):e0157090. doi:10.1371/journal.pone.0157090

    Article  PubMed  PubMed Central  Google Scholar 

  25. van der Land V, Hijmans CT, de Ruiter M, Mutsaerts HJ, Cnossen MH, Engelen M, Majoie CB, Nederveen AJ, Grootenhuis MA, Fijnvandraat K (2015) Volume of white matter hyperintensities is an independent predictor of intelligence quotient and processing speed in children with sickle cell disease. Br J Haematol 168(4):553–556. doi:10.1111/bjh.13179

    Article  PubMed  Google Scholar 

  26. Novelli EM, Elizabeth Sarles C, Jay Aizenstein H, Ibrahim TS, Butters MA, Connelly Ritter A, Erickson KI, Rosano C (2015) Brain venular pattern by 7T MRI correlates with memory and haemoglobin in sickle cell anaemia. Psychiatry Res 233(1):18–22. doi:10.1016/j.pscychresns.2015.04.005

    Article  PubMed  Google Scholar 

  27. Iampietro M, Giovannetti T, Tarazi R (2014) Hypoxia and inflammation in children with sickle cell disease: implications for hippocampal functioning and episodic memory. Neuropsychol Rev 24(2):252–265. doi:10.1007/s11065-014-9259-4

    Article  PubMed  Google Scholar 

  28. Schatz J, Stancil M, Katz T, Sanchez CE (2014) EXAMINER executive function battery and neurologic morbidity in pediatric sickle cell disease. J Int Neuropsychol Soc 20(1):29–40. doi:10.1017/s1355617713001239

    Article  PubMed  Google Scholar 

  29. Ruffieux N, Njamnshi AK, Wonkam A, Hauert CA, Chanal J, Verdon V, Fonsah JY, Eta SC, Doh RF, Ngamaleu RN, Kengne AM, Fossati C, Sztajzel R (2013) Association between biological markers of sickle cell disease and cognitive functioning amongst Cameroonian children. Child Neuropsychol 19(2):143–160. doi:10.1080/09297049.2011.640932

    Article  CAS  PubMed  Google Scholar 

  30. Bakker MJ, Hofmann J, Churches OF, Badcock NA, Kohler M, Keage HA (2014) Cerebrovascular function and cognition in childhood: a systematic review of transcranial Doppler studies. BMC Neurol 14:43. doi:10.1186/1471-2377-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  31. Andreotti C, King AA, Macy E, Compas BE, DeBaun MR (2015) The association of cytokine levels with cognitive function in children with sickle cell disease and normal MRI studies of the brain. J Child Neurol 30(10):1349–1353. doi:10.1177/0883073814563140

    Article  PubMed  Google Scholar 

  32. Anderson LM, Allen TM, Thornburg CD, Bonner MJ (2015) Fatigue in children with sickle cell disease: association with neurocognitive and social-emotional functioning and quality of life. J Pediatr Hematol Oncol 37(8):584–589. doi:10.1097/mph.0000000000000431

    Article  PubMed  Google Scholar 

  33. King AA, Strouse JJ, Rodeghier MJ, Compas BE, Casella JF, McKinstry RC, Noetzel MJ, Quinn CT, Ichord R, Dowling MM, Miller JP, Debaun MR (2014) Parent education and biologic factors influence on cognition in sickle cell anemia. Am J Hematol 89(2):162–167. doi:10.1002/ajh.23604

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oluwole OB, Noll RB, Winger DG, Akinyanju O, Novelli EM (2016) Cognitive functioning in children from Nigeria with sickle cell anemia. Pediatr Blood Cancer 63:1990–1997. doi:10.1002/pbc.26126

    Article  PubMed  Google Scholar 

  35. Hollocks MJ, Kok TB, Kirkham FJ, Gavlak J, Inusa BP, DeBaun MR, de Haan M (2012) Nocturnal oxygen desaturation and disordered sleep as a potential factor in executive dysfunction in sickle cell anemia. J Int Neuropsychol Soc 18(1):168–173. doi:10.1017/s1355617711001469

    Article  PubMed  Google Scholar 

  36. Yarboi J, Compas BE, Brody GH, White D, Rees Patterson J, Ziara K, King A (2015) Association of social-environmental factors with cognitive function in children with sickle cell disease. Child Neuropsychol 15:1–18. doi:10.1080/09297049.2015.1111318

    Article  Google Scholar 

  37. Montanaro M, Colombatti R, Pugliese M, Migliozzi C, Zani F, Guerzoni ME, Manoli S, Manara R, Meneghetti G, Rampazzo P, Cavalleri F, Giordan M, Paolucci P, Basso G, Palazzi G, Sainati L (2013) Intellectual function evaluation of first generation immigrant children with sickle cell disease: the role of language and sociodemographic factors. Ital J Pediatr 39:36. doi:10.1186/1824-7288-39-36

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hensler M, Wolfe K, Lebensburger J, Nieman J, Barnes M, Nolan W, King A, Madan-Swain A (2014) Social skills and executive function among youth with sickle cell disease: a preliminary investigation. J Pediatr Psychol 39(5):493–500. doi:10.1093/jpepsy/jst138

    Article  PubMed  PubMed Central  Google Scholar 

  39. Drazen CH, Abel R, Gabir M, Farmer G, King AA (2016) Prevalence of developmental delay and contributing factors among children with sickle cell disease. Pediatr Blood Cancer 63(3):504–510. doi:10.1002/pbc.25838

    Article  PubMed  Google Scholar 

  40. Fields ME, Hoyt-Drazen C, Abel R, Rodeghier MJ, Yarboi JM, Compas BE, King AA (2016) A pilot study of parent education intervention improves early childhood development among toddlers with sickle cell disease. Pediatr Blood Cancer. doi:10.1002/pbc.26164

  41. Daly B, Kral MC, Brown RT, Elkin D, Madan-Swain A, Mitchell M, Crosby L, Dematteo D, Larosa A, Jackson S (2012) Ameliorating attention problems in children with sickle cell disease: a pilot study of methylphenidate. J Dev Behav Pediatr 33(3):244–251. doi:10.1097/DBP.0b013e31824ba1b5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hardy SJ, Hardy KK, Schatz JC, Thompson AL, Meier ER (2016) Feasibility of home-based computerized working memory training with children and adolescents with sickle cell disease. Pediatr Blood Cancer 63(9):1578–1585. doi:10.1002/pbc.26019

    Article  PubMed  Google Scholar 

  43. King AA, White DA, McKinstry RC, Noetzel M, Debaun MR (2007) A pilot randomized education rehabilitation trial is feasible in sickle cell and strokes. Neurology 68(23):2008–2011. doi:10.1212/01.wnl.0000264421.24415.16

    Article  CAS  PubMed  Google Scholar 

  44. Feder KP, Majnemer A (2007) Handwriting development, competency, and intervention. Dev Med Child Neurol 49(4):312–317. doi:10.1111/j.1469-8749.2007.00312.x

    Article  PubMed  Google Scholar 

  45. McHale K, Cermak SA (1992) Fine motor activities in elementary school: preliminary findings and provisional implications for children with fine motor problems. Am J Occup Ther 46(10):898–903

    Article  CAS  PubMed  Google Scholar 

  46. Diamond A (2000) Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev 71(1):44–56

    Article  CAS  PubMed  Google Scholar 

  47. Michel E, Roethlisberger M, Neuenschwander R, Roebers CM (2011) Development of cognitive skills in children with motor coordination impairments at 12-month follow-up. Child Neuropsychol 17(2):151–172. doi:10.1080/09297049.2010.525501

    Article  PubMed  Google Scholar 

  48. Hariman LM, Griffith ER, Hurtig AL, Keehn MT (1991) Functional outcomes of children with sickle-cell disease affected by stroke. Arch Phys Med Rehabil 72(7):498–502

    CAS  PubMed  Google Scholar 

  49. Grueneich R, Ris MD, Ball W, Kalinyak KA, Noll R, Vannatta K, Wells R (2004) Relationship of structural magnetic resonance imaging, magnetic resonance perfusion, and other disease factors to neuropsychological outcome in sickle cell disease. J Pediatr Psychol 29(2):83–92

    Article  PubMed  Google Scholar 

  50. Hogan AM, Kirkham FJ, Prengler M, Telfer P, Lane R, Vargha-Khadem F, Haan M (2006) An exploratory study of physiological correlates of neurodevelopmental delay in infants with sickle cell anaemia. Br J Haematol 132(1):99–107. doi:10.1111/j.1365-2141.2005.05828.x

    Article  PubMed  Google Scholar 

  51. Rueckriegel SM, Blankenburg F, Burghardt R, Ehrlich S, Henze G, Mergl R, Hernaiz Driever P (2008) Influence of age and movement complexity on kinematic hand movement parameters in childhood and adolescence. Int J Dev Neurosci 26(7):655–663. doi:10.1016/j.ijdevneu.2008.07.015

    Article  PubMed  Google Scholar 

  52. Huijbregts S, de Sonneville LMJ, Licht R, Sergeant J, van Spronsen F (2002) Inhibition of prepotent responding and attentional flexibility in treated phenylketonuria. Dev Neuropsychol 22(2):481–499. doi:10.1207/s15326942dn2202_4

    Article  PubMed  Google Scholar 

  53. Tewes U, Schallberger P, Rossmann U (1999) Hamburg-Wechsler-Intelligenztest für Kinder III (HAWIK-III). Huber, Bern

    Google Scholar 

  54. Unterrainer JM, Rahm B, Kaller CP, Leonhart R, Quiske K, Hoppe-Seyler K, Meier C, Muller C, Halsband U (2004) Planning abilities and the Tower of London: is this task measuring a discrete cognitive function? J Clin Exp Neuropsychol 26(6):846–856. doi:10.1080/13803390490509574

    Article  CAS  PubMed  Google Scholar 

  55. Krikorian R, Bartok J, Gay N (1994) Tower of London procedure: a standard method and developmental data. J Clin Exp Neuropsychol 16(6):840–850. doi:10.1080/01688639408402697

    Article  CAS  PubMed  Google Scholar 

  56. Tucha O, Lange KW (2004) Turm von London—Deutsche version. Hogrefe, Göttingen

    Google Scholar 

  57. de Sonneville LMJ (1999) Cognitive ergonomics, clinical assessment and computer assisted learning: computers in psychology. Lisse, The Netherlands

    Google Scholar 

  58. de Sonneville LMJ (2005) Neuropsychologische Taken: Wetenschappelijke en klinische toepassingen. Tijdschrift voor Neuropsychologie 0:27–41

  59. de Sonneville LMJ (1999) Amsterdam Neuropsychological Task: a computer aided assessment programm. In: Beek PJ, Brand AN, den Brinker BPLM, Maarse FJ, Mulder LJM (eds) Cognitive ergonomics, clinical assesment and computer assisted learning: computers in psychology. Svvets & Zeitlinger, Lisse, pp 187–203

    Google Scholar 

  60. de Sonneville LM, Boringa JB, Reuling IE, Lazeron RH, Ader HJ, Polman CH (2002) Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia 40(11):1751–1765

    Article  PubMed  Google Scholar 

  61. Cohen J (1977) Statistical power analysis for the behavioral sciences. Routledge, New York

    Google Scholar 

  62. Bulas D (2005) Screening children for sickle cell vasculopathy: guidelines for transcranial Doppler evaluation. Pediatr Radiol 35(3):235–241. doi:10.1007/s00247-005-1417-7

    Article  PubMed  Google Scholar 

  63. Lee MT, Piomelli S, Granger S, Miller ST, Harkness S, Brambilla DJ, Adams RJ (2006) Stroke Prevention Trial in Sickle Cell Anemia (STOP): extended follow-up and final results. Blood 108(3):847–852. doi:10.1182/blood-2005-10-009506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hijmans CT, Fijnvandraat K, Grootenhuis MA, van Geloven N, Heijboer H, Peters M, Oosterlaan J (2011) Neurocognitive deficits in children with sickle cell disease: a comprehensive profile. Pediatr Blood Cancer 56(5):783–788. doi:10.1002/pbc.22879

    Article  PubMed  Google Scholar 

  65. Miller BA, Salameh M, Ahmed M, Wainscoat J, Antognetti G, Orkin S, Weatherall D, Nathan DG (1986) High fetal hemoglobin production in sickle cell anemia in the eastern province of Saudi Arabia is genetically determined. Blood 67(5):1404–1410

    CAS  PubMed  Google Scholar 

  66. Benson N, Beaujean AA, Taub GE (2015) Using score equating and measurement invariance to examine the Flynn effect in the Wechsler Adult Intelligence Scale. Multivariate Behav Res 50(4):398–415. doi:10.1080/00273171.2015.1022642

    Article  PubMed  Google Scholar 

  67. Berkelhammer LD, Williamson AL, Sanford SD, Dirksen CL, Sharp WG, Margulies AS, Prengler RA (2007) Neurocognitive sequelae of pediatric sickle cell disease: a review of the literature. Child Neuropsychol 13(2):120–131. doi:10.1080/09297040600800956

    Article  PubMed  Google Scholar 

  68. Unterrainer JM, Owen AM (2006) Planning and problem solving: from neuropsychology to functional neuroimaging. J Physiol Paris 99(4-6):308–317. doi:10.1016/j.jphysparis.2006.03.014

    Article  PubMed  Google Scholar 

  69. Schatz J, Puffer ES, Sanchez C, Stancil M, Roberts CW (2009) Language processing deficits in sickle cell disease in young school-age children. Dev Neuropsychol 34(1):122–136. doi:10.1080/87565640802499191

    Article  PubMed  Google Scholar 

  70. Kugler S, Anderson B, Cross D, Sharif Z, Sano M, Haggerty R, Prohovnik I, Hurlet-Jensen A, Hilal S, Mohr JP et al (1993) Abnormal cranial magnetic resonance imaging scans in sickle-cell disease. Neurological correlates and clinical implications. Arch Neurol 50(6):629–635

    Article  CAS  PubMed  Google Scholar 

  71. Sanders C, Gentry B, Davis P, Jackson J, Saccente S, Dancer J (1997) Reading, writing, and vocabulary skills of children with strokes due to sickle cell disease. Percept Mot Skills 85(2):477–478

    Article  CAS  PubMed  Google Scholar 

  72. Balci A, Karazincir S, Beyoglu Y, Cingiz C, Davran R, Gali E, Okuyucu E, Egilmez E (2012) Quantitative brain diffusion-tensor MRI findings in patients with sickle cell disease. AJR Am J Roentgenol 198(5):1167–1174. doi:10.2214/ajr.11.7404

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank “KINDerLEBENe.V.” for supporting Elisabeth Koustenis and the “Kind-Philipp-Foundation” for supporting Stefan Mark Rueckriegel. We are indebted to Raffaella Colombatti for many helpful discussions and critical reading of the manuscript. We also thank Hermann Baqué for support when performing the cognitive tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Hernáiz Driever.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Luise Burkhardt and Stephan Lobitz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkhardt, L., Lobitz, S., Koustenis, E. et al. Cognitive and fine motor deficits in a pediatric sickle cell disease cohort of mixed ethnic origin. Ann Hematol 96, 199–213 (2017). https://doi.org/10.1007/s00277-016-2861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2861-1

Keywords

Navigation