Skip to main content

Advertisement

Log in

The spontaneous mouse mutant low set ears (Lse) is caused by tandem duplication of Fgf3 and Fgf4

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The external ear develops from an organized convergence of ventrally migrating neural crest cells into the first and second branchial arches. Defects in external ear position are often symptomatic of complex syndromes such as Apert, Treacher-Collins, and Crouzon Syndrome. The low set ears (Lse) spontaneous mouse mutant is characterized by the dominant inheritance of a ventrally shifted external ear position and an abnormal external auditory meatus (EAM). We identified the causative mutation as a 148 Kb tandem duplication on Chromosome 7, which includes the entire coding sequences of Fgf3 and Fgf4. Duplications of FGF3 and FGF4 occur in 11q duplication syndrome in humans and are associated with craniofacial anomalies, among other features. Intercrosses of Lse-affected mice revealed perinatal lethality in homozygotes, and Lse/Lse embryos display additional phenotypes including polydactyly, abnormal eye morphology, and cleft secondary palate. The duplication results in increased Fgf3 and Fgf4 expression in the branchial arches and additional discrete domains in the developing embryo. This ectopic overexpression resulted in functional FGF signaling, demonstrated by increased Spry2 and Etv5 expression in overlapping domains of the developing arches. Finally, a genetic interaction between Fgf3/4 overexpression and Twist1, a regulator of skull suture development, resulted in perinatal lethality, cleft palate, and polydactyly in compound heterozygotes. These data indicate a role for Fgf3 and Fgf4 in external ear and palate development and provide a novel mouse model for further interrogation of the biological consequences of human FGF3/4 duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data, including microCT image datasets, are available upon request.

References

  • Allen BL, Tenzen T, McMahon AP (2007) The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 21(10):1244–1257

  • Arnold JS, Braunstein EM, Ohyama T, Groves AK, Adams JC, Brown MC, Morrow BE (2006) Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet 15:1629–1639

    CAS  PubMed  Google Scholar 

  • Bourgeois P, Bolcato-Bellemin AL, Danse JM, Bloch-Zupan A, Yoshiba K, Stoetzel C, Perrin-Schmitt F (1998) The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Hum Mol Genet 7:945–957

    CAS  PubMed  Google Scholar 

  • Brewer JR, Mazot P, Soriano P (2016) Genetic insights into the mechanisms of Fgf signaling. Genes Dev 30:751–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlton MB, Colledge WH, Evans MJ (1998) Crouzon-like craniofacial dysmorphology in the mouse is caused by an insertional mutation at the Fgf3/Fgf4 locus. Dev Dyn 212:242–249

    CAS  PubMed  Google Scholar 

  • Carver EA, Oram KF, Gridley T (2002) Craniosynostosis in Twist heterozygous mice: a model for Saethre–Chotzen syndrome. Anat Rec 268:90–92

    PubMed  Google Scholar 

  • Chang B, Hawes NL, Hurd RE, Wang J, Howell D, Davisson MT, Roderick TH, Nusinowitz S, Heckenlively JR (2005) Mouse models of ocular diseases. Vis Neurosci 22:587–593

    CAS  PubMed  Google Scholar 

  • Chen ZF, Behringer RR (1995) twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9:686–699

    CAS  PubMed  Google Scholar 

  • Connerney J, Andreeva V, Leshem Y, Mercado MA, Dowell K, Yang X, Lindner V, Friesel RE, Spicer DB (2008) Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Dev Biol 318:323–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox TC, Camci ED, Vora S, Luquetti DV, Turner EE (2014) The genetics of auricular development and malformation: new findings in model systems driving future directions for microtia research. Eur J Med Genet 57:394–401

    PubMed  PubMed Central  Google Scholar 

  • Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, Meehan TF, Weninger WJ, Westerberg H, Adissu H, Baker CN, Bower L, Brown JM, Caddle LB, Chiani F, Clary D, Cleak J, Daly MJ, Denegre JM, Doe B, Dolan ME, Edie SM, Fuchs H, Gailus-Durner V, Galli A, Gambadoro A, Gallegos J, Guo S, Horner NR, Hsu CW, Johnson SJ, Kalaga S, Keith LC, Lanoue L, Lawson TN, Lek M, Mark M, Marschall S, Mason J, McElwee ML, Newbigging S, Nutter LM, Peterson KA, Ramirez-Solis R, Rowland DJ, Ryder E, Samocha KE, Seavitt JR, Selloum M, Szoke-Kovacs Z, Tamura M, Trainor AG, Tudose I, Wakana S, Warren J, Wendling O, West DB, Wong L, Yoshiki A, Jackson L, Charles River L, Harwell MRC, MacArthur DG, Tocchini-Valentini GP, Gao X, Flicek P, Bradley A, Skarnes WC, Justice MJ, Parkinson HE, Moore M, Wells S, Braun RE, Svenson KL, de Angelis MH, Herault Y, Mohun T, Mallon AM, Henkelman RM, Brown SD, Adams DJ, Lloyd KC, McKerlie C, Beaudet AL, Bucan M, Murray SA (2016) High-throughput discovery of novel developmental phenotypes. Nature 537:508–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon MJ (1995) Treacher Collins syndrome. J Med Genet 32:806–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonaventure J (1997) Mutations of the TWIST gene in the Saethre–Chotzen syndrome. Nat Genet 15:42–46

    PubMed  Google Scholar 

  • Fairfield H, Srivastava A, Ananda G, Liu R, Kircher M, Lakshminarayana A, Harris BS, Karst SY, Dionne LA, Kane CC, Curtain M, Berry ML, Ward-Bailey PF, Greenstein I, Byers C, Czechanski A, Sharp J, Palmer K, Gudis P, Martin W, Tadenev A, Bogdanik L, Pratt CH, Chang B, Schroeder DG, Cox GA, Cliften P, Milbrandt J, Murray S, Burgess R, Bergstrom DE, Donahue LR, Hamamy H, Masri A, Santoni FA, Makrythanasis P, Antonarakis SE, Shendure J, Reinholdt LG (2015) Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. Genome Res 25(7):948–957

  • Fekete DM (1999) Development of the vertebrate ear: insights from knockouts and mutants. Trends Neurosci 22:263–269

    CAS  PubMed  Google Scholar 

  • Fuchs JC, Tucker AS (2015) Development and Integration of the ear. Curr Top Dev Biol 115:213–232

    PubMed  Google Scholar 

  • Gendron-Maguire M, Mallo M, Zhang M, Gridley T (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317–1331

    CAS  PubMed  Google Scholar 

  • Grevellec A, Tucker AS (2010) The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Semin Cell Dev Biol 21:325–332

    PubMed  Google Scholar 

  • Kane KL, Longo-Guess CM, Gagnon LH, Ding D, Salvi RJ, Johnson KR (2012) Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 283:80–88

    CAS  PubMed  Google Scholar 

  • Khatri SB, Edlund RK, Groves AK (2014) Foxi3 is necessary for the induction of the chick otic placode in response to FGF signaling. Dev Biol 391:158–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlhase J, Heinrich M, Schubert L, Liebers M, Kispert A, Laccone F, Turnpenny P, Winter RM, Reardon W (2002) Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet 11:2979–2987

    CAS  PubMed  Google Scholar 

  • Lambert PR, Dodson EE (1996) Congenital malformations of the external auditory canal. Otolaryngol Clin North Am 29:741–760

    CAS  PubMed  Google Scholar 

  • Mahoney Rogers AA, Zhang J, Shim K (2011) Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling. Dev Biol 353:94–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallo M (2003) Formation of the outer and middle ear, molecular mechanisms. Curr Top Dev Biol 57:85–113

  • McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and Kreisler mutant mice. Dev Biol 174:370–378

    CAS  PubMed  Google Scholar 

  • Melville H, Wang Y, Taub PJ, Jabs EW (2010) Genetic basis of potential therapeutic strategies for craniosynostosis. Am J Med Genet A 152A:3007–3015

    PubMed  Google Scholar 

  • Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, Rijli FM (2013) Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development 140:4386–4397

    CAS  PubMed  Google Scholar 

  • Naski MC, Wang Q, Xu J, Ornitz DM (1996) Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13:233–237

    CAS  PubMed  Google Scholar 

  • Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    CAS  PubMed  Google Scholar 

  • Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, Thesleff I, Rice DP (2004) Disruption of Fgf10/Fgfr2b-coordinated epithelial–mesenchymal interactions causes cleft palate. J Clin Invest 113:1692–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Perez JA, Wakamiya M, Behringer RR (1999) Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. Development 126:3811–3821

    CAS  PubMed  Google Scholar 

  • Robinson ML, Ohtaka-Maruyama C, Chan CC, Jamieson S, Dickson C, Overbeek PA, Chepelinsky AB (1998) Disregulation of ocular morphogenesis by lens-specific expression of FGF-3/int-2 in transgenic mice. Dev Biol 198:13–31

    CAS  PubMed  Google Scholar 

  • Rosin JM, Li W, Cox LL, Rolfe SM, Latorre V, Akiyama JA, Visel A, Kuramoto T, Bobola N, Turner EE, Cox TC (2016) A distal 594 bp ECR specifies Hmx1 expression in pinna and lateral facial morphogenesis and is regulated by the Hox-Pbx-Meis complex. Development 143:2582–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanier P, Pauws E (2012) Development of the lip and palate: FGF signalling. Front Oral Biol 16:71–80

    PubMed  Google Scholar 

  • Tekin M, Ozturkmen Akay H, Fitoz S, Birnbaum S, Cengiz FB, Sennaroglu L, Incesulu A, Yuksel Konuk EB, Hasanefendioglu Bayrak A, Senturk S, Cebeci I, Utine GE, Tuncbilek E, Nance WE, Duman D (2008) Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia. Clin Genet 73:554–565

    CAS  PubMed  Google Scholar 

  • Theiler K, Sweet HO (1986) Low set ears (Lse), a new mutation of the house mouse. Anat Embryol (berl) 175:241–246

    CAS  PubMed  Google Scholar 

  • Tingaud-Sequeira A, Trimouille A, Sagardoy T, Lacombe D, Rooryck C (2022) Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease. J Med Genet 59:417–427

    CAS  PubMed  Google Scholar 

  • Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    CAS  PubMed  Google Scholar 

  • Welsh IC, Hagge-Greenberg A, O’Brien TP (2007) A dosage-dependent role for Spry2 in growth and patterning during palate development. Mech Dev 124:746–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie AO, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P et al (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9:165–172

    CAS  PubMed  Google Scholar 

  • Wilkinson DG, Peters G, Dickson C, McMahon AP (1988) Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J 7:691–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MD, Spring S, Henkelman RM (2013) Structural stabilization of tissue for embryo phenotyping using micro-CT with iodine staining. PLoS ONE 8:e84321

    PubMed  PubMed Central  Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390

    CAS  PubMed  Google Scholar 

  • Yelavarthi KK, Zunich J (2004) Familial interstitial duplication of 11q; partial trisomy (11)(q13.5q21). Am J Med Genet A 126A:423–426

    PubMed  Google Scholar 

  • Zarate YA, Kogan JM, Schorry EK, Smolarek TA, Hopkin RJ (2007) A new case of de novo 11q duplication in a patient with normal development and intelligence and review of the literature. Am J Med Genet A 143A:265–270

    PubMed  Google Scholar 

  • Zhang Y, Fons JM, Hajihosseini MK, Zhang T, Tucker AS (2020) An essential requirement for Fgf10 in pinna extension sheds light on auricle defects in LADD syndrome. Front Cell Dev Biol 8:609643

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the following for their assistance, expertise, information on strain history and/or helpful feedback on the manuscript: Bo Chang, Norm Hawes, Michelle Curtain, and Kevin Peterson. This work was supported by NIH Grants OD021325 (L.G.R. and D.E.B), EY015073 (L.R.D.), DE020052 (S.A.M. and L.R.D.)

Author information

Authors and Affiliations

Authors

Contributions

SAM and LRD conceived and designed the experiments; AL, SE, KP, and LBC executed experiments, assembled figures, and analyzed results; IW helped design experiments, analyze data, and interpret results; RU and LOG generated and analyzed ddPCR results; LGR and DEB provided gene discovery support and analysis; TCC conducted microCT experiments and analyzed results; AL and SAM wrote the manuscript. All authors reviewed the manuscript and provided edits and feedback.

Corresponding author

Correspondence to Stephen A. Murray.

Ethics declarations

Competing interests

The corresponding author, Stephen A. Murray, is an editor-in-chief of the journal. There are no other competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luzzio, A., Edie, S., Palmer, K. et al. The spontaneous mouse mutant low set ears (Lse) is caused by tandem duplication of Fgf3 and Fgf4. Mamm Genome 34, 453–463 (2023). https://doi.org/10.1007/s00335-023-09999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-023-09999-8

Navigation