Skip to main content
Log in

3D atom probe assisted by femtosecond laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The 3DAP allows to image a material in 3D on a nearly atomic scale. It is based on the field evaporation occurring at the surface of a biased tip like shape specimen with an end radius of 50 nm. Surface atoms are removed one by one from the tip by means of fs laser pulses so that the physical process involved in this laser enhanced field evaporation might correspond to the very early stages of the ablation process. This technique makes possible to distinguish between different regimes of material removal such as thermal evaporation or in the case of metals or semiconductors an evaporation assisted by the rectification of the optical field at the surface. In this paper the principle of the 3DAP is presented and the underlying physics involved in the field evaporation assisted by femtosecond laser pulses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.W. Muller, Naturwissenschaften 29, 533 (1941)

    Article  ADS  Google Scholar 

  2. D. Blavette et al., Nature 363, 432 (1993)

    Article  ADS  Google Scholar 

  3. M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W. Smith, Atom Probe Field Ion Microscopy (Clarendon, Oxford, 1996)

    Google Scholar 

  4. D. Blavette, E. Cadel, A. Fraczkiewicz, A. Menand, Science 286, 5448 (1999)

    Article  Google Scholar 

  5. B. Deconihout, D. Blavette, A. Menand, in Proceedings of the 7th International Winter School of Physics (ITEP, Moscow), vol. 7, pp. 53 (2004)

  6. F. Vurpillot et al., Appl. Phys. Lett. 88, 094105 (2006)

    Article  ADS  Google Scholar 

  7. A. Vella et al., Appl. Phys. Lett. 89, 251903 (2006)

    Article  ADS  Google Scholar 

  8. A. Vella et al., Phys. Rev. B 73, 165416 (2006)

    Article  ADS  Google Scholar 

  9. A. Vella, B. Deconihout, L. Marrucci, E. Santamato, Phys. Rev. Lett. 99, 046103 (2007)

    Article  ADS  Google Scholar 

  10. A. Plech, V. Kotaidis, M. Lorenc, J. Boneberg, Nat. Phys. 2, 44 (2006)

    Article  Google Scholar 

  11. E. Mueller, Z. Phys. 131 (1951)

  12. E.W. Müller, J.A. Panitz, S.B. McLane, Rev. Phys. Instr. 39, 83 (1968)

    ADS  Google Scholar 

  13. D. Blavette et al., Rev. Sci. Instrum. 64 (1993)

  14. L. Novotny, R.X. Bian, S. Xie, Phys. Rev. Lett. 79(4), 645 (1997)

    Article  ADS  Google Scholar 

  15. B. Gault et al., Appl. Phys. Lett. 86, 094101 (2005)

    Article  ADS  Google Scholar 

  16. B. Gault et al., Appl. Phys. Lett. 86, 094101 (2006)

    Article  ADS  Google Scholar 

  17. H.K. et al., Appl. Phys. Lett. 89, 181905 (2006)

    Article  ADS  Google Scholar 

  18. K. Thompson, J.H. Bunton, T.F. Kelly, D.J. Larson, Appl. Phys. Lett. 87, 052108 (2005)

    Article  ADS  Google Scholar 

  19. C. Lavoie, F. d’Heurle, C. Detavernier, C. Cabral, Microelectron. Eng. 70, 144 (2003)

    Article  Google Scholar 

  20. D. Mangelinck, J.Y. Dai, J. Pan, S.K. Lahiri, Appl. Phys. Lett. 75, 1736 (1999)

    Article  ADS  Google Scholar 

  21. U. Gosele, K.N. Tu, J. Appl. Phys. 66, 2621 (1989)

    Article  ADS  Google Scholar 

  22. L. Clevenger, C.V. Thompson, J. Appl. Phys. 67, 1325 (1990)

    Article  ADS  Google Scholar 

  23. E. Mueller, Phys. Rev. 103, 618 (1956)

    Article  ADS  Google Scholar 

  24. R. Gomer, J. Chem. Phys. 31, 341 (1951)

    Article  ADS  Google Scholar 

  25. T.T. Tsong, J. Phys. F: Metal Phys. 8, 1349 (1978)

    Article  ADS  Google Scholar 

  26. G.G. Rusina et al., Phys. Rev. B 71, 245401 (2005)

    Article  ADS  Google Scholar 

  27. G. Kellog, Phys. Rev. B 29, 4304 (1984)

    Article  ADS  Google Scholar 

  28. G.D. Costa et al., Rev. Sci. Instrum. 76, 013304 (2005)

    Article  ADS  Google Scholar 

  29. G.T. Boyd, T. Rasing, J.R.R. Leite, Y.R. Shen, Phys. Rev. B 30, 519 (1984)

    Article  ADS  Google Scholar 

  30. L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645 (1997)

    Article  ADS  Google Scholar 

  31. O. Martin, C. Girard, Appl. Phys. Lett. 70, 705 (1997)

    Article  ADS  Google Scholar 

  32. Y. Martin, H.F. Hamann, H.K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001)

    Article  ADS  Google Scholar 

  33. G. Kellogg, T. Tsong, J. Appl. Phys. 51(2), 1184 (1980)

    Article  ADS  Google Scholar 

  34. H. Liu, H. Liu, T. Tsong, J. Appl. Phys. 59, 1334 (1986)

    Article  ADS  Google Scholar 

  35. H. Liu, T. Tsong, Rev. Sci. Instrum. 55, 1779 (1984)

    Article  ADS  Google Scholar 

  36. J. Rudnick, E.A. Stern, Phys. Rev. B. 4, 4274 (1971)

    Article  ADS  Google Scholar 

  37. J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Phys. Rev. B 21, 4389 (1980)

    Article  ADS  Google Scholar 

  38. M. Weber, A. Liebsch, Phys. Rev. B 35, 7411 (1987)

    Article  ADS  Google Scholar 

  39. C.K. Chen, T.F. Heinz, D. Richard, Y.R. Shen, Phys. Rev. B. 27, 27 (1983)

    Article  Google Scholar 

  40. R. Murphy, M. Yeganeh, K.J. Song, E.W. Plummer, Phys. Rev. Lett. 63, 318 (1989)

    Article  ADS  Google Scholar 

  41. D. Krause, C.W. Teplin, C.T. Rogers, J. Appl. Phys. 96, 3626 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deconihout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deconihout, B., Vella, A., Vurpillot, F. et al. 3D atom probe assisted by femtosecond laser pulses. Appl. Phys. A 93, 995–1003 (2008). https://doi.org/10.1007/s00339-008-4774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4774-x

PACS

Navigation