Skip to main content
Log in

Ablation enhancement by femtosecond laser irradiation assisted with a microtorch for microgrooves fabrication in PMMA

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study proposes an ablation enhancement approach to fabricate microgrooves in PMMA by femtosecond laser irradiation assisted with a microtorch. The influences of pulse energy and scanning speed on the groove depth and removal area of groove are investigated. It is demonstrated that the improvement of groove depth has a close relationship with the scanning speed. When the scanning speed was less than 50 µm/s, the ablated groove depth is considerably improved with various pulse energies, up to 100 %. Moreover, the removal area of groove has significant enhancements of up to 250 % in various processing parameters. It is suggested that the ablation enhancement of microgrooves fabrication is related to the status of plasma plume and substrate heating. With the assistance of the microtorch, laser-induced plasma plume is confined and its density at center region is raised, which results in the increment of the central plasma’s temperature and more energy deposited on the PMMA surface, ultimately leading to the ablation enhancement. Meanwhile, the instantaneous substrate heating also plays a crucial role on enhanced microgrooves fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.R. Mendonca, L.R. Cerami, T. Shih, R.W. Tilghman, T. Baldacchini, E. Mazur, Opt. Express 16, 200 (2008)

    Article  ADS  Google Scholar 

  2. K. Yamasaki, S. Juodkazis, S. Matsuo, H. Misawa, Appl. Phys. A 77, 371 (2003)

    Article  ADS  Google Scholar 

  3. S. Lazare, J. Lopez, F. Weisbuch, Appl. Phys. A 69, S1 (1999)

    Article  ADS  Google Scholar 

  4. J. Kruger, W. Kautek, Adv. Polym. Sci. 168, 247 (2004)

    Article  Google Scholar 

  5. Y. Nasu, M. Kohtoku, Y. Hibino, Opt. Lett. 30, 723 (2005)

    Article  ADS  Google Scholar 

  6. L. Jiang, H.L. Tsai, Appl. Phys. Lett. 87, 151104 (2005)

    Article  ADS  Google Scholar 

  7. S.V. Garnov, S.M. Klimentov, V.I. Konov, T.V. Kononenko, F. Dausinger, Quantum Electron. 28, 42 (1998)

    Article  ADS  Google Scholar 

  8. D. Day, M. Gu, Opt. Express 13, 5939 (2005)

    Article  ADS  Google Scholar 

  9. C.R. Mendonca, L.R. Cerami, T. Shih, R.W. Tilghman, T. Baldacchini, E. Mazur, Opt. Express 16, 200 (2008)

    Article  ADS  Google Scholar 

  10. C.D. Marco, S.M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, R. Osellame, ACS Appl. Mater. Interfaces 2, 2377 (2010)

    Article  Google Scholar 

  11. S. Kuper, M. Stuke, Appl. Phys. B 44, 199 (1987)

    Article  ADS  Google Scholar 

  12. C. Wang, L. Jiang, F. Wang, X. Li, Y.P. Yuan, H. Xiao, H.L. Tsai, Y.F. Lu, J. Phys. Condens. Matter 24(27), 275801 (2012)

    Article  ADS  Google Scholar 

  13. T.Y. Hwang, A.Y. Vorobyev, C. Guo, Opt. Express 19, A824 (2011)

    Article  ADS  Google Scholar 

  14. T.Y. Hwang, A.Y. Vorobyev, C. Guo, Appl. Phys. A 108, 299 (2012)

    Article  ADS  Google Scholar 

  15. K. Yin, J.A. Duan, X.Y. Sun, C. Wang, Z. Luo, Appl. Phys. A 119, 69 (2015)

    Article  ADS  Google Scholar 

  16. A.Y. Vorobyev, C. Guo, Opt. Express 18, 6455 (2010)

    Article  ADS  Google Scholar 

  17. Q.Q. Yang, X. Li, L. Jiang, N. Zhang, G.M. Zhang, X.S. Shi, K.H. Zhang, J. Hu, Y.F. Lu, Opt. Lett. 40, 2045 (2015)

    Article  ADS  Google Scholar 

  18. N. Zhang, X. Li, L. Jiang, X.S. Shi, C. Li, Y.F. Lu, Opt. Lett. 38, 3558 (2013)

    Article  ADS  Google Scholar 

  19. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  20. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Surf. Sci. 278, 7 (2013)

    Article  ADS  Google Scholar 

  21. M. Huang, Y. Cheng, F.L. Zhao, Z.Z. Xu, Ann. Phys. (Berlin) 525, 74 (2013)

    Article  ADS  Google Scholar 

  22. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 102, 074107 (2013)

    Article  ADS  Google Scholar 

  23. L. Jiang, J.Q. Fang, Q. Cao, K.H. Zhang, P. Wang, Y.W. Yu, Q. Huang, Y.F. Lu, Appl. Opt. 53, 7290 (2014)

    Article  ADS  Google Scholar 

  24. B. Xia, L. Jiang, X.W. Li, X.L. Yan, W.W. Zhao, Y.F. Lu, Appl. Phys. A 119, 61 (2015)

    Article  ADS  Google Scholar 

  25. L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J.F. Silvain, Y.F. Lu, Opt. Express 23, 15047 (2015)

    Article  ADS  Google Scholar 

  26. F.F. Chen, Introduction to Plasma Physics (Plenum, New York, 1974)

    Google Scholar 

  27. L. Liu, S. Li, X.N. He, X. Huang, C.F. Zhang, L.S. Fan, M.X. Wang, Y.S. Zhou, K. Chen, L. Jiang, J.F. Silvain, Y.F. Lu, Opt. Express 22, 7686 (2014)

    Article  ADS  Google Scholar 

  28. J. Thorstensen, S.E. Foss, J. Appl. Phys. 112, 103514 (2012)

    Article  ADS  Google Scholar 

  29. L.S. Jiao, S.K. Moon, E.Y.K. Ng, H.Y. Zheng, H.S. Son, App. Phys. Lett. 104, 181902 (2014)

    Article  ADS  Google Scholar 

  30. J.S. Yahng, S.C. Jeoung, Opt. Lasers Eng. 49, 1040 (2011)

    Article  Google Scholar 

  31. K. Yin, J.A. Duan, C. Wang, X.R. Dong, Y.X. Song, Z. Luo, App. Phys. Lett. 108, 241601 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB013000), National Natural Science Foundation of China (NSFC) (Grant Nos. 91323301 and 51505505), Natural Science Foundation of Hunan Province (Grant No. 2016JJ3147), China Postdoctoral Science Foundation (Grant No. 2015M572264, 2016T90757), and Self-selected Topic Fund of State Key Laboratory of High Performance and Complex Manufacturing (Grant No. ZZYJKT2015-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Wang, C., Dong, X. et al. Ablation enhancement by femtosecond laser irradiation assisted with a microtorch for microgrooves fabrication in PMMA. Appl. Phys. A 122, 764 (2016). https://doi.org/10.1007/s00339-016-0292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0292-4

Keywords

Navigation