Skip to main content

Advertisement

Log in

New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight™ HPS laser.

Methods

The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects.

Results

The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight™ HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P < 0.05). A calculated ‘output power efficiency per watt’ revealed that the 1,318-nm laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P < 0.0001). All three diode lasers showed superior hemostatic properties compared to the GreenLight™ HPS laser (each P < 0.01). The extend of morphological tissue necrosis was 4.62 mm (1,318 nm), 1.30 mm (1,470 nm), 4.18 mm (980 nm) and 0.84 mm (GreenLight™ HPS laser), respectively.

Conclusion

The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight™ HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight™ HPS laser may explain improved hemostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Madersbacher S, Marberger M (1999) Is transurethral resection of the prostate still justified? BJU Int 83(3):227–237

    Article  CAS  PubMed  Google Scholar 

  2. Rassweiler J et al (2006) Complications of transurethral resection of the prostate (TURP)—incidence, management, and prevention. Eur Urol 50(5):969–979 discussion 980

    Article  PubMed  Google Scholar 

  3. Madersbacher S et al (2004) EAU 2004 guidelines on assessment, therapy and follow-up of men with lower urinary tract symptoms suggestive of benign prostatic obstruction (BPH guidelines). Eur Urol 46(5):547–554

    Article  PubMed  Google Scholar 

  4. Fried NM (2007) New laser treatment approaches for benign prostatic hyperplasia. Curr Urol Rep 8(1):47–52

    Article  PubMed  Google Scholar 

  5. Kuntz RM (2007) Laser treatment of benign prostatic hyperplasia. World J Urol 25(3):241–247

    Article  PubMed  Google Scholar 

  6. Bachmann A et al (2005) Photoselective vaporization (PVP) versus transurethral resection of the prostate (TURP): a prospective bi-centre study of perioperative morbidity and early functional outcome. Eur Urol 48(6):965–971 discussion 972

    Article  PubMed  Google Scholar 

  7. Hai MA (2009) Photoselective vaporization of prostate: five-year outcomes of entire clinic patient population. Urology 73(4):807–810

    Article  PubMed  Google Scholar 

  8. Gomez Sancha F et al (2007) Photoselective vaporization of the prostate (GreenLight PV): lessons learnt after 3500 procedures. Prostate Cancer Prostatic Dis 10(4):316–322

    Article  CAS  PubMed  Google Scholar 

  9. Wendt-Nordahl G et al (2007) 980-nm Diode laser: a novel laser technology for vaporization of the prostate. Eur Urol 52(6):1723–17238

    Article  PubMed  Google Scholar 

  10. Michel MS et al (1996) Rotoresect: new technique for resection of the prostate: experimental phase. J Endourol 10(5):473–478

    Article  CAS  PubMed  Google Scholar 

  11. Wendt-Nordahl G et al (2008) Systematic evaluation of a recently introduced 2-microm continuous-wave thulium laser for vaporesection of the prostate. J Endourol 22(5):1041–1045

    Article  PubMed  Google Scholar 

  12. Reich O et al (2004) Experimental comparison of high power (80 W) potassium titanyl phosphate laser vaporization and transurethral resection of the prostate. J Urol 171(6 Pt 1):2502–2504

    Article  PubMed  Google Scholar 

  13. Gilling P (2008) Holmium laser enucleation of the prostate (HoLEP). BJU Int 101(1):131–142

    Article  PubMed  Google Scholar 

  14. Malek RS, Barrett DM, Kuntzman RS (1998) High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 h later. Urology 51(2):254–256

    Article  CAS  PubMed  Google Scholar 

  15. Bouchier-Hayes DM et al (2006) KTP laser versus transurethral resection: early results of a randomized trial. J Endourol 20(8):580–585

    Article  PubMed  Google Scholar 

  16. Sandhu JS et al (2004) High-power potassium-titanyl-phosphate photoselective laser vaporization of prostate for treatment of benign prostatic hyperplasia in men with large prostates. Urology 64(6):1155–1159

    Article  PubMed  Google Scholar 

  17. Malek RS et al (2009) Greenlight photoselective 120-Watt 532-nm lithium triborate laser vaporization prostatectomy in living canines. J Endourol

  18. Woo H et al (2008) Outcome of GreenLight HPS 120-W laser therapy in specific patient populations: those in retention, on anticoagulants, and with large prostates (≥80 ml). Eur Urol Suppl 7(4):378–383

    Article  Google Scholar 

  19. Leonardi R (2009) Preliminary results on selective light vaporization with the side-firing 980 nm diode laser in benign prostatic hyperplasia: an ejaculation sparing technique. Prostate Cancer Prostatic Dis

  20. Seitz M et al (2009) Preliminary evaluation of a novel side-fire diode laser emitting light at 940 nm, for the potential treatment of benign prostatic hyperplasia: ex-vivo and in-vivo investigations. BJU Int 103(6):770–775

    Article  PubMed  Google Scholar 

  21. Seitz M et al (2008) Ex vivo and in vivo investigations of the novel 1,470 nm diode laser for potential treatment of benign prostatic enlargement. Lasers Med Sci

  22. Costello AJ et al (1992) Laser ablation of the prostate in patients with benign prostatic hypertrophy. Br J Urol 69(6):603–608

    Article  CAS  PubMed  Google Scholar 

  23. Ruszat R et al (2009) Prospective single-centre comparison of 120-W diode-pumped solid-state high-intensity system laser vaporization of the prostate and 200-W high-intensive diode-laser ablation of the prostate for treating benign prostatic hyperplasia. BJU Int

  24. Erol A et al (2009) High power diode laser vaporization of the prostate: preliminary results for benign prostatic hyperplasia. J Urol 182(3):1078–1082

    Article  CAS  PubMed  Google Scholar 

  25. Seitz M et al (2007) The diode laser: a novel side-firing approach for laser vaporisation of the human prostate—immediate efficacy and 1-year follow-up. Eur Urol 52(6):1717–1722

    Article  PubMed  Google Scholar 

  26. Kang HW et al (2008) Laser vaporization of bovine prostate: a quantitative comparison of potassium-titanyl-phosphate and lithium triborate lasers. J Urol 180(6):2675–2680

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Wezel.

Additional information

F. Wezel and G. Wendt-Nordahl have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wezel, F., Wendt-Nordahl, G., Huck, N. et al. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device. World J Urol 28, 181–186 (2010). https://doi.org/10.1007/s00345-009-0499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-009-0499-5

Keywords

Navigation