Skip to main content
Log in

Bacterial community composition in the rhizosphere of maize cultivars widely grown in different decades

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The composition of the rhizosphere bacterial communities was compared among different maize cultivars by pyrosequencing. The cultivars were “Ye Dan 4,” “Ben Yu 9,” “Zheng Dan 958,” and “Li Min 33,” popularized in the 1980s, 1990s, 2000s, and 2010s, respectively, in Jilin Province, China. These cultivars harbored different bacterial dominant species. Significant differences were detected in the five dominant phyla, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes, especially between Li Min 33 and the three other cultivars. Li Min 33 had the lowest bacterial α-diversity, which was separated from other cultivars, according to a principal component analysis and the dissimilarity test of ADONIS. The γ-Proteobacteria, and within this, the genus Rhodanobacter, were significantly more abundant around Li Min 33 than around the other maize cultivars. The canonical correlation analysis indicated that the organic matter, soil pH, soil moisture, and leaf area index were important drivers of bacterial diversity. Mantel tests showed that the cultivar was significantly correlated with the microbial community composition. These results may aid in breeding or selecting new generations of plant cultivars that have the potential to support large populations of specific microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Dominguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281

    Article  CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Appl Microbiol Lett 48:542–547

    Article  CAS  Google Scholar 

  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An DS, Lee HG, Lee ST, Im WT (2009) Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 59:691–694

    Article  CAS  PubMed  Google Scholar 

  • Araújo da Silva KR, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Meth 54:213–231

    Article  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  CAS  Google Scholar 

  • Bell TH, Hassan SE, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M (2014) Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J 8:331–343

    Article  CAS  PubMed  Google Scholar 

  • Bollmann A, Palumbo AV, Lewis K, Epstein SS (2010) Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 76:7413–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw JE, Dale MFB, Mackay GR (2003) Use of mid-parent values and progeny tests to increase the efficiency of potato breeding for combined processing quality and disease and pest resistance. Theor Appl Genet 107:36–42

    Article  CAS  PubMed  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing N, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68:3067–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusetti L, Francia P, Bertolini C, Pagliuca A, Borin S, Sorlini C, Abruzzese A, Sacchi G, Viti C, Giovannetti L, Giuntini E, Bazzicalupo M, Daffonchio D (2004) Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart. Plant Soil 266:11–21

    Article  CAS  Google Scholar 

  • Bui TP, Kim YJ, Kim H, Yang DC (2010) Rhodanobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:2935–2939

    Article  CAS  PubMed  Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry 87:65–77

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP, Nelson LM, Holl FB (1988) Cultivar specific growth promotion of spring wheat Triticum aestivum L. by coexistent Bacillus species. Can J Microbiol 34:925–929

    Article  Google Scholar 

  • Corrales I, Amenós M, Poschenrieder C, Barceló J (2007) Phosphorus efficiency and root exudates in two contrasting tropical maize varieties. J Plant Nutr 30:887–900

    Article  CAS  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083

    Article  CAS  PubMed  Google Scholar 

  • De Clercq D, Van Trappen S, Cleenwerck I, Ceustermans A, Swings J, Coosemans J, Ryckeboer J (2006) Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. Int J Syst Evol Microbiol 56:1755–1759

    Article  CAS  PubMed  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  CAS  PubMed  Google Scholar 

  • Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schlüter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. ISME J 7:37–49

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan TW, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Figueiredo MV, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33:410–415

    Article  Google Scholar 

  • Grayston S, Campbell C (1996) Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol 16:1031–1038

    Article  PubMed  Google Scholar 

  • Haichar FE, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Herbert Y, Guingo E, Loudet O (2001) The response of root/shoot partitioning and root morphology to light reduction in maize genotypes. Crop Sci 16:162–211

    Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B, Tang CX (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Im WT, Lee ST, Yokota A (2004) Rhodanobacter fulvus sp. nov., a beta-galactosidase-producing gammaproteobacterium. J Gen Appl Microbiol 50:143–147

    Article  CAS  PubMed  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King EB, Parke JL (1993) Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis 77:1185–1188

    Article  Google Scholar 

  • Kostka JE, Green SJ, Rishishwar L, Prakash O, Katz LS, Mariño-Ramíreze L, Jordana IK, Munk C, Ivanova N, Mikhailova N, Watson DB, Brown SD, Palumbo AV, Brooks SC (2012) Genome sequences for six Rhodanobacter strains, isolated from soils and the terrestrial subsurface, with variable denitrification capabilities. J Bacteriol 194:4461–4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucey RMN (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. J Appl Bacteriol 64:187–196

    Article  CAS  Google Scholar 

  • Kumar PS, Brooker MR, Dowd SE, Camerlengo T (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One 6:e20956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EA, Tollenaar M (2007) Physiological basis of successful breeding strategies for maize grain yield. Crop Sci 47:S202–S215

    Google Scholar 

  • Leeman M, van Pelt JA, den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Li J (2013) The identification of density-tolerance and genetic study of maize under different density selection pressure. Ph.D Dissertation. Jinlin Agricultural University

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064–1068

    Article  Google Scholar 

  • Liu P, Lin Q, Sui F, Sun Z (1994) Study on the characteristics of root system in high-yield upright-leaf maize. J Maize Sciences 3:36–39

    CAS  Google Scholar 

  • Mansfield BD, Mumm RH (2014) Survey of plant density tolerance in US maize germplasm. Crop Sci 54:157–173

    Article  Google Scholar 

  • Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated opine-producing plants is independent of the opine, the soil origin, and the plant species. Appl Environ Microbiol 68:2562–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb Ecol 48:338–348

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Gu Y-H (2000) Phyto-management of microbial community structure to enhance growth of apple in replant soils. Acta Hortic 532:73–78

    Article  Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sc 162:373–383

    Article  CAS  Google Scholar 

  • Micallef SA, Channer S, Shiaris MP, Colon-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Milling A, Smalla K, Xaver F, Maidl K, Schloter M, Munch JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266:23–39

    Article  CAS  Google Scholar 

  • Nalin R, Simonet P, Vogel TM, Normand P (1999) Rhodanobacter lindaniclasticus gen. Nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23

    Article  PubMed  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  CAS  PubMed  Google Scholar 

  • Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fert Soils 50:415–432

    Article  CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Hansen MA, Giagnoni L, Ascher J, Arenella M, Sørensen SJ, Pietramellara G, Nannipieri P, Renella G (2015a) Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere. Biol Fert Soils 51:995–1004

    Article  CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Pietramellara G, Puschenreiter M, Giagnoni L, Arenella M, Varanini Z, Nannpieri P, Renella G (2015b) Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 387:413–424

    Article  CAS  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard C, Bosco M (2006) Heterozygosis drives maize hybrids to select elite 2,4-diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations. FEMS Microbiol Ecol 58:193–204

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Bosco M (2005) Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins producing Pseudomonas populations. FEMS Microbiol Ecol 53:349–357

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Frascaroli E, Bosco M (2004) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing rhizobacteria are differentially affected by the genotype of two maize inbred lines and their hybrid. FEMS Microbiol Ecol 49:207–215

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. R (2013) A language and environment for statistical computing R Foundation for Statistical Computing: Vienna, Austria. http://www.R-project.org/

  • Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fert soils 50:405–414

    Article  CAS  Google Scholar 

  • Sanguin H, Sarniguet A, Gazengel K, Moёnne-Loccoz Y, Grundmann GL (2009) Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694–707

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1997) Modeling dose-response relationships in biocontrol: partitioning host responses to the pathogen and biocontrol agent. Phytopathology 87:720–729

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Methods of soil analysis. Part 3—chemical methods. Soil Science Society of America Inc, Madison, WI

    Google Scholar 

  • Tollenaar M, Daynard TB (1978) Relationship between assimilate source and reproductive sink in maize grown in a short season environment. Agron J 70:219–223

    Article  Google Scholar 

  • Vakili NG (1992) Biological seed treatment of corn with mycopathogenic fungi. J Phytopathol 134:313–323

    Article  Google Scholar 

  • Vakili NG, Bailey TB Jr (1989) Yield response of corn hybrids and inbred lines to phylloplane treatment with mycopathogenic fungi. Crop Sci 29:183–190

    Article  Google Scholar 

  • van den Heuvel RN, van der Biezen E, Jetten MS, Hefting MM, Kartal B (2010) Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community. Enviro Microbiol 12:3264–3271

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang L, An DS, Kim SG, Jin FX, Lee ST, Im WT (2011) Rhodanobacter panaciterrae sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61:3028–3032

    Article  CAS  PubMed  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Kim BY, Hong SB, Jeon YA, Kwon SW, Go SJ, Koo BS (2007) Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 57:2810–2813

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim M, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant 21:737–744

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Fund for Agro-Scientific Research of the Ministry of Agriculture of China (201103001) and the National Key Research and Development Program of China (2016YFD0300203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xinya Wen and Meng Wang contributed equally to this work.

Electronic supplementary material

Figure S1

(DOCX 458 kb)

Figure S2

(DOCX 409 kb)

Figure S3

(DOCX 436 kb)

Table S1

(DOCX 15 kb)

Table S2

(DOCX 16 kb)

Table S3

(DOCX 14 kb)

Table S4

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Wang, M., Ti, J. et al. Bacterial community composition in the rhizosphere of maize cultivars widely grown in different decades. Biol Fertil Soils 53, 221–229 (2017). https://doi.org/10.1007/s00374-016-1169-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1169-6

Keywords

Navigation