Skip to main content
Log in

Soil bacteria show different tolerance ranges to an unprecedented disturbance

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil microbial communities have remarkable capacities to cope with ceaseless environmental changes, but little is known about their adaptation potential when facing an unprecedented disturbance. We tested the effect of incremental dose of microwaving on soil bacteria as a model of unprecedented stress. 16S rRNA gene qPCR at both the DNA and cDNA levels was used to characterize the total (DNA) and transcriptionally active (cDNA) fractions of the bacterial community. Amplicon sequencing of 16S rRNA gene transcripts was performed to decipher tolerance ranges within the community using the concept of functional response groups (FRGs). Increasing microwaving doses resulted in 90% loss in total and transcriptionally active bacterial communities after 6.8 and 4.7 min, respectively. Four distinct FRGs with peculiar phylogenetic signatures were identified, revealing a link between taxonomy and increasing stress doses. FRG1, the most sensitive group, was dominated by Actinobacteria. FRG2 and FRG3, with intermediate tolerance, displayed prevalence of Proteobacteria, while FRG4, the most resistant group, was driven by Firmicutes. While the most sensitive FRGs showed predictable responses linked to changes in temperature and soil water content associated with microwaving, more tolerant FRG4 members exhibited a stochastic response nested within the Firmicutes phylum, potentially revealing bet-hedging strategists. The concept of FRGs based on 16S rRNA gene transcripts stood as an efficient tool for unraveling bacterial survival strategies and tolerance ranges triggered by incremental doses of an unprecedented stress, with regard to phylogeny linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammann AB, Kölle L, Brandl H (2011) Detection of bacterial endospores in soil by terbium fluorescence. Int J Microbiol 2011:10–15. https://doi.org/10.1155/2011/435281

    Google Scholar 

  • Aslan K, Previte MJR, Zhang Y, Gallagher T, Baillie L, Geddes CD (2008) Extraction and detection of DNA from Bacillus anthracis spores and the vegetative cells within 1 min. Anal Chem 80:4125–4132. https://doi.org/10.1021/ac800519r

    Article  CAS  PubMed  Google Scholar 

  • Barnard RL, Osborne CA, Firestone MK (2015) Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J 9:946–957. https://doi.org/10.1038/ismej.2014.192

    Article  CAS  PubMed  Google Scholar 

  • Barot S, Blouin M, Fontaine S, Jouquet P, Lata JC, Mathieu J (2007) A tale of four stories: soil ecology, theory, evolution and the publication system. PLoS One 2. https://doi.org/10.1371/journal.pone.0001248

  • Bazin MJ, Prosser JI (eds) (1988) Physiological models in microbiology, vol II. CRC, Boca Raton

    Google Scholar 

  • Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB (2009) Experimental evolution of bet hedging. Nature Lett 462:90–92

    Article  CAS  Google Scholar 

  • Belova SE, Pankratova TA, Detkova EN, Kaparullina EN, Dedysh SN (2009) Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands. Int J Syst Evol Microbiol 59:2283–2290. https://doi.org/10.1099/ijs.0.009209-0

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W H Freeman, New York section 5.1

    Google Scholar 

  • Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botelho ML, Cabo Verde S, Alves L, Belchior A, Reymão J, Trabulo S, Gaspar MM, Cruz MEM, Simões S (2007) Radiation sterilization of antibiotic liposome formulations: a case study. Radiat Phys Chem 76:1542–1546. https://doi.org/10.1016/j.radphyschem.2007.02.069

    Article  CAS  Google Scholar 

  • Bouskill NJ, Tang J, Riley WJ, Brodie EL (2012) Trait-based representation of biological nitrification: model development, testing, and predicted community composition. Front Microbiol 3:364. https://doi.org/10.3389/fmicb.2012.00364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high- throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Ceccherini MT, Ascher J, Pietramellara G, Vogel T, Nannipieri P (2007) Vertical advection of extracellular DNA by water capillarity in soil columns. Soil Biol Biochem 39:158–163

    Article  CAS  Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Article  CAS  PubMed  Google Scholar 

  • Crowther JA (1924) Some considerations relative to the action of X-rays on tissue cells. Proc R Soc London Ser B Contain Pap Biol Character 96:207–211

    Article  Google Scholar 

  • Culhane AC, Perrière G, Considine EC, Cotter TG, Higgins DG (2002) Between-group analysis of microarray data. Bioinformatics 18:1600–1608

    Article  CAS  PubMed  Google Scholar 

  • Culhane AC, Thioulouse J, Perrière G, Higgins DG (2005) MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21:2789–2790

    Article  CAS  PubMed  Google Scholar 

  • Darbar RS, Lakzian A (2007) Evaluation of chemical and biological consequences of soil sterilization methods. Caspian J Environ Sci 5:87–91

    Google Scholar 

  • de Boer W, Verheggen P, Klein Gunnewiek PJA, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69:835–844. https://doi.org/10.1128/AEM.69.2.835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias ACF, Hoogwout EF, Pereira e Silva MDC, Salles JF, van Overbeek LS, van Elsas JD (2012) Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere. Soil Biol Biochem 50:85–95. https://doi.org/10.1016/j.soilbio.2012.03.006

    Article  CAS  Google Scholar 

  • Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci U S A 112:1326–1332

    Article  CAS  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Eberspächer J, Lingens F (2006) The genus Phenylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes—volume 5. Springer, New York, pp 250–256

    Chapter  Google Scholar 

  • Ederer MM, Crawford RL, Herwig RP, Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans BA, Rozen DE (2013) Significant variation in transformation frequency in Streptococcus pneumoniae. ISME J 7:791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Zhou G, Li Y, Liu S, Chu G, Xu Z, Liu J (2016) Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest. Biol Fertil Soils 52:353–365

    Article  CAS  Google Scholar 

  • Ferriss RS (1984) Effects of microwave oven treatment on microorganisms in soil. Phytologia 74:121–126

    Google Scholar 

  • Finlay BJ, Maberly SC, Cooper JI (1997) Microbial diversity and ecosystem function. Oikos 80:209–213

    Article  Google Scholar 

  • Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G, Collins MD (1996) Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 34:2356–2363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313

    Article  CAS  PubMed  Google Scholar 

  • Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9–18. https://doi.org/10.1016/j.bcp.2008.05.025

    Google Scholar 

  • Haugwitz MS, Bergmark L, Priemé A, Christensen S, Beier C, Michelsen A (2014) Soil microorganisms respond to five years of climate change manipulations and elevated atmospheric CO2 in a temperate heath ecosystem. Plant Soil 374:211–222. https://doi.org/10.1007/s11104-013-1855-1

    Article  CAS  Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153. https://doi.org/10.1099/00221287-139-6-1147

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Hoshino Y, Satoh T (1991) Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Microbiol 155:330–336. https://doi.org/10.1007/BF00243451

    Article  Google Scholar 

  • Holden JF, Adams MWW, Baross JA (1999) Heat shock response in hyperthermophilic microorganisms. Microbial Biosystems: New Frontiers

  • Iovieno P, Bååth E (2008) Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiol Ecol 65:400–407. https://doi.org/10.1111/j.1574-6941.2008.00524.x

    Article  CAS  PubMed  Google Scholar 

  • Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fertil Soils 27:408–416

    Article  CAS  Google Scholar 

  • Jablonowski ND, Linden A, Köppchen S, Thiele B, Hofmann D, Burauel P (2012) Dry-wet cycles increase pesticide residue release from soil. Environ Toxicol Chem 31:1941–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquiod S, Franqueville L, Cécillon S, Vogel TM, Simonet P (2013) Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 8:1–13. https://doi.org/10.1371/journal.pone.0079699

    Article  CAS  Google Scholar 

  • Jacquiod S, Brejnrod A, Morberg SM, Abu Al-Soud W, Sørensen SJ, Riber L (2017a) Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Mol Ecol 26:3556–3571

    Article  CAS  PubMed  Google Scholar 

  • Jacquiod S, Cyriaque V, Riber L, Abu Al-Soud W, David CG, Ruddy W, Sørensen SJ (2017b) Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J Hazard Mater 344:299–307

    Article  PubMed  CAS  Google Scholar 

  • Johnsen PJ, Dubnau D, Levin BR (2009) Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis. Genetics 181:1521–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Keddie RM (2006) The genus Arthrobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes—volume 3. Springer, New York, pp 945–960

    Chapter  Google Scholar 

  • Juggins S (2015) rioja: analysis of quaternary science data, R package version (0.9-5)

  • Jurburg SD, Nunes I, Brejnrod A, Jacquiod S, Priemé A, Sørensen SJ, Van Elsas JD, Salles JF (2017a) Legacy effects on the recovery of soil bacterial communities from extreme temperature perturbation. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01832

  • Jurburg SD, Nunes I, Stegen JC, Le Roux X, Priemé A, Sørensen SJ, Salles JF (2017b) Autogenic succession and deterministic recovery following disturbance in soil bacterial communities. Nature. Sci Rep 7:45691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart HP, Philippot L, Bodelier PLE (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00251

    Article  Google Scholar 

  • Lanza VF, Tedim AP, Martínez JL, Baquero F, Coque TM (2015) The plasmidome of Firmicutes: impact on the emergence and the spread of resistance to antimicrobials. Microbiol Spectr 3:1–37

    Article  CAS  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x

    Article  Google Scholar 

  • Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecol 93:1867–1879

    Article  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715. https://doi.org/10.1038/362709a0

    Article  CAS  PubMed  Google Scholar 

  • Lingens F, Blecher R, Blecher H, Blobel F, Eberspächer J, Fröhner C, Görisch H, Görisch H, Layh G (1985) Phenylobacterium immobile gen. nov., sp. nov., a gram-negative bacterium that degrades the herbicide chloridazon. Int J Syst Bacteriol 35:26–39

    Article  CAS  Google Scholar 

  • Mallon C, Poly F, Le Roux X, Marring I, van Elsas JD, Salles JF (2015) Resource pulses can alleviate the biodiversity–invasion relationship in soil microbial communities. Ecology 96:915–926

    Article  PubMed  Google Scholar 

  • Marguet E, Forterre P (1994) DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Res 22:1681–1686. https://doi.org/10.1093/nar/22.9.1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martiny JBH, Jones SE, Lennon JT, Martiny AC (2015) Microbiomes in light of traits: a phylogenetic perspective. Science 350:aac9323–aac9323. https://doi.org/10.1126/science.aac9323

    Article  PubMed  CAS  Google Scholar 

  • Meisner A, Bååth E, Rousk J (2013) Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol Biochem 66:188–192. https://doi.org/10.1016/j.soilbio.2013.07.014

    Article  CAS  Google Scholar 

  • Meisner A, Rousk J, Bååth E (2015) Prolonged drought changes the bacterial growth response to rewetting. Soil Biol Biochem 88:314–322. https://doi.org/10.1016/j.soilbio.2015.06.002

    Article  CAS  Google Scholar 

  • Mell JC, Redfield RJ (2014) Natural competence and the evolution of DNA uptake specificity. J Bacteriol 196:1471–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nalin R, Simonet P, Voge TM, Normandl P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23

    Article  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nelson SO (1996) A review and assessment of microwave energy for soil treatment to control pests. ASAE 39:281–289

    Article  Google Scholar 

  • Neuwirth E (2011) RColorBrewer: ColorBrewer palettes, R package version 1.0-5

  • Nunes I, Mesquita N, Cabo Verde S, João Trigo M, Ferreira A, Manuela Carolino M, Portugal A, Luísa Botelho M (2012) Gamma radiation effects on physical properties of parchment documents: assessment of Dmax. Radiat Phys Chem 81:1943–1946. https://doi.org/10.1016/j.radphyschem.2012.07.016

    Article  CAS  Google Scholar 

  • Nunes I, Mesquita N, Cabo Verde S, Carolino MM, Portugal A, Botelho ML (2013) Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiat Phys Chem 88:82–89

    Article  CAS  Google Scholar 

  • Nunes I, Jacquiod S, Brejnrod A, Holm PE, Johansen A, Brandt KK, Priemé A, Sørensen SJ (2016) Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol Ecol 92:fiw175

    Article  PubMed  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package, R package version 2.0-10

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmegiani L, Accorsi A, Cognigni GE, Bernardi S, Troilo E, Filicori M (2010) Sterilization of liquid nitrogen with ultraviolet irradiation for safe vitrification of human oocytes or embryos. Fertil Steril 94:1525–1528. https://doi.org/10.1016/j.fertnstert.2009.05.089

    Article  PubMed  Google Scholar 

  • Pellegrino PM, Fell NF, Gillespie JB (2002) Enhanced spore detection using dipicolinate extraction techniques. Anal Chim Acta 455:167–177. https://doi.org/10.1016/S0003-2670(01)01613-0

    Article  CAS  Google Scholar 

  • Pereira e Silva MC, Dias ACF, van Elsas JD, Salles JF (2012a) Spatial and temporal variation of archaeal, bacterial and fungal communities in agricultural soils. PLoS One 7:e51554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira e Silva MC, Poly F, Guillaumaud N, van Elsas JD, Salles JF (2012b) Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH. Front Microbiol 3:77. https://doi.org/10.3389/fmicb.2012.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira e Silva MC, Semenov AV, Schmitt H, van Elsas JD, Salles JF (2013) Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biol Biochem 57:995–1002. https://doi.org/10.1016/j.soilbio.2012.10.002

    Article  CAS  Google Scholar 

  • Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    Article  CAS  PubMed  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    Article  CAS  Google Scholar 

  • Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol Ecol 81:507–519. https://doi.org/10.1111/j.1574-6941.2012.01435.x

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing

  • Rajon E, Desouhant E, Chevalier M, Débias F, Menu F (2014) The evolution of bet hedging in response to local ecological conditions. Am Nat 184:E1–E15

    Article  PubMed  Google Scholar 

  • Rykiel EJ (1985) Towards a definition of ecological disturbance. Aust J Ecol 10:361–365

    Article  Google Scholar 

  • Salles JF, Le Roux X, Poly F (2012) Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning. Front Microbiol 3:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Chang Biol 1:77–91

    Article  Google Scholar 

  • Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485. https://doi.org/10.1007/s00374-017-1205-1

    Article  CAS  Google Scholar 

  • Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:1–19. https://doi.org/10.3389/fmicb.2012.00417

    Article  Google Scholar 

  • Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. MBio 4:e00602–e00612

    Article  PubMed  PubMed Central  Google Scholar 

  • Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC, Whitman WB (2003) Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490. https://doi.org/10.1099/ijs.0.02438-0

    Article  PubMed  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191. https://doi.org/10.1128/MMBR.00015-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speir TW, Cowling JC, Sparling GP, Went AW, Corderoy DM (1986) Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biol Biochem 18:377–382

    Article  CAS  Google Scholar 

  • Suding KN, Goldstein LJ (2008) Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytol 180:559–562

    Article  PubMed  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  PubMed  Google Scholar 

  • Thiel CS, Tauber S, Schütte A, Schmitz B, Nuesse H, Moeller R, Ullrich O (2014) Functional activity of plasmid DNA after entry into the atmosphere of earth investigated by a new biomarker stability assay for ballistic spaceflight experiments. PLoS One 9:e112979. https://doi.org/10.1371/journal.pone.0112979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trevors JT (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Methods 26:53–59

    Article  CAS  Google Scholar 

  • Urakami T, Sasaki J, Suzuki KI, Komagata K (1995) Characterization and description of Hyphomicrobium denitrificans sp. nov. Int J Syst Bacteriol 45:528–532. https://doi.org/10.1099/00207713-45-3-528

    Article  Google Scholar 

  • Vaid A, Bishop AH (1998) The destruction by microwave radiation of bacterial endospores and amplification of the released DNA. J Appl Microbiol 85:115–122. https://doi.org/10.1046/j.1365-2672.1998.00475.x

    Article  CAS  Google Scholar 

  • van Elsas JD, Jansson JK, Trevors JT (eds) (2006) Modern soil microbiology, 2nd ed, books in soils, plants, and the environment. CRC, Boca Raton

    Google Scholar 

  • Vela GR, Wu JF (1979) Mechanism of lethal action of 2,450-MHz radiation on microorganisms. Appl Environ Microbiol 37:550–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velikonja BH, Tkavc R, Pašić L (2014) Diversity of cultivable bacteria involved in the formation of macroscopic microbial colonies (cave silver) on the walls of a cave in Slovenia. Int J Speleol 43:45–56. https://doi.org/10.5038/1827-806X.43.1.5

    Article  Google Scholar 

  • Vestergaard G, Schulz S, Schöler A, Schloter M (2017) Making big data smart—how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484

    Article  Google Scholar 

  • Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W (eds) (2009) Bergey’s manual of systematic bacteriology, volume 3: the Firmicutes, 2nd edn. Springer, New York

    Google Scholar 

  • Wainwright M, Killham K, Diprose MF (1980) Effects of 2450 MHz microwave radiation on nitrification, respiration and S-oxidation in soil. Soil Biol Biochem 12:489–493. https://doi.org/10.1016/0038-0717(80)90085-1

    Article  CAS  Google Scholar 

  • Wang X, Cammeraat ELH, Cerli C, Kalbitz K (2014) Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biol Biochem 72:55–65

    Article  CAS  Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2015) gplots: various R programming tools for plotting data. R package version 2.17.0

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144:1–7. https://doi.org/10.1007/BF00454947

    Article  Google Scholar 

  • Weon HY, Kim BY, Yoo SH, Lee SY, Kwon SW, Go SJ, Stackebrandt E (2006) Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 56:1777–1782. https://doi.org/10.1099/ijs.0.64242-0

    Article  CAS  PubMed  Google Scholar 

  • Wolf DC, Dao TH, Scott HD, Lavy TL (1987) Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J Environ Qual 18:39–44

    Article  Google Scholar 

  • Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Wang Y, Tang Y, Dai J, Zhang L, An H, Luo G, Rahman E, Fang C (2010) Niastella populi sp. nov., isolated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella. Int J Syst Evol Microbiol 60:542–545. https://doi.org/10.1099/ijs.0.012112-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sandra Cabo-Verde for the discussions on microbial inactivation and Jan Dirk van Elsas for critical revisions of the manuscript.

Funding

This research was funded by the international project TRAINBIODIVERSE from the European Community’s Seventh Framework Program (FP7-PEOPLE-2011-ITN) under grant agreement no 289949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Nunes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Online Resource 1

(PDF 218 kb)

Online Resource 2

(PDF 143 kb)

Online Resource 3

(PDF 180 kb)

Online Resource 4

(PDF 107 kb)

Online Resource 5

(PDF 98 kb)

Online Resource 6

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, I., Jurburg, S., Jacquiod, S. et al. Soil bacteria show different tolerance ranges to an unprecedented disturbance. Biol Fertil Soils 54, 189–202 (2018). https://doi.org/10.1007/s00374-017-1255-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-017-1255-4

Keywords

Navigation