Skip to main content

Advertisement

Log in

Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Patients with DICER1 predisposition syndrome have an increased risk to develop pleuropulmonary blastoma, cystic nephroma, embryonal rhabdomyosarcoma, and several other rare tumor entities. In this study, we identified 22 primary intracranial sarcomas, including 18 in pediatric patients, with a distinct methylation signature detected by array-based DNA-methylation profiling. In addition, two uterine rhabdomyosarcomas sharing identical features were identified. Gene panel sequencing of the 22 intracranial sarcomas revealed the almost unifying feature of DICER1 hotspot mutations (21/22; 95%) and a high frequency of co-occurring TP53 mutations (12/22; 55%). In addition, 17/22 (77%) sarcomas exhibited alterations in the mitogen-activated protein kinase pathway, most frequently affecting the mutational hotspots of KRAS (8/22; 36%) and mutations or deletions of NF1 (7/22; 32%), followed by mutations of FGFR4 (2/22; 9%), NRAS (2/22; 9%), and amplification of EGFR (1/22; 5%). A germline DICER1 mutation was detected in two of five cases with constitutional DNA available. Notably, none of the patients showed evidence of a cancer-related syndrome at the time of diagnosis. In contrast to the genetic findings, the morphological features of these tumors were less distinctive, although rhabdomyoblasts or rhabdomyoblast-like cells could retrospectively be detected in all cases. The identified combination of genetic events indicates a relationship between the intracranial tumors analyzed and DICER1 predisposition syndrome-associated sarcomas such as embryonal rhabdomyosarcoma or the recently described group of anaplastic sarcomas of the kidney. However, the intracranial tumors in our series were initially interpreted to represent various tumor types, but rhabdomyosarcoma was not among the typical differential diagnoses considered. Given the rarity of intracranial sarcomas, this molecularly clearly defined group comprises a considerable fraction thereof. We therefore propose the designation “spindle cell sarcoma with rhabdomyosarcoma-like features, DICER1 mutant” for this intriguing group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. de Kock L, Boshari T, Martinelli F, Wojcik E, Niedziela M, Foulkes WD (2016) Adult-onset cervical embryonal rhabdomyosarcoma and DICER1 mutations. J Low Genit Tract Dis 20:e8–e10

    Article  PubMed  Google Scholar 

  3. de Kock L, Druker H, Weber E et al (2015) Ovarian embryonal rhabdomyosarcoma is a rare manifestation of the DICER1 syndrome. Hum Pathol 46:917–922

    Article  PubMed  Google Scholar 

  4. de Kock L, Foulkes WD (2016) Sarcoma and germ-line DICER1 mutations. Lancet Oncol 17:e470

    Article  PubMed  CAS  Google Scholar 

  5. de Kock L, Sabbaghian N, Druker H et al (2014) Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol 128:583–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dehner LP, Jarzembowski JA, Hill DA (2012) Embryonal rhabdomyosarcoma of the uterine cervix: a report of 14 cases and a discussion of its unusual clinicopathological associations. Mod Pathol 25:602–614

    Article  PubMed  Google Scholar 

  7. Doros L, Yang J, Dehner L et al (2012) DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr Blood Cancer 59:558–560

    Article  PubMed  Google Scholar 

  8. Dropcho EJ, Allen JC (1987) Primary intracranial rhabdomyosarcoma: case report and review of the literature. J Neurooncol 5:139–150

    Article  PubMed  CAS  Google Scholar 

  9. Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME (2018) Hedgehog pathway drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell 33(108–124):e105

    Google Scholar 

  10. Fernandez-Martinez L, Villegas JA, Santamaria I et al (2017) Identification of somatic and germ-line DICER1 mutations in pleuropulmonary blastoma, cystic nephroma and rhabdomyosarcoma tumors within a DICER1 syndrome pedigree. BMC Cancer 17:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Foulkes WD, Bahubeshi A, Hamel N et al (2011) Extending the phenotypes associated with DICER1 mutations. Hum Mutat 32:1381–1384

    Article  PubMed  CAS  Google Scholar 

  12. Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14:662–672

    Article  PubMed  CAS  Google Scholar 

  13. Grobner SN, Worst BC, Weischenfeldt J et al (2018) The landscape of genomic alterations across childhood cancers. Nature 555:321–327

    Article  PubMed  CAS  Google Scholar 

  14. Koelsche C, Hartmann W, Schrimpf D et al (2018) Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information. Mod Pathol. https://doi.org/10.1038/s41379-018-0045-3

    Article  PubMed  Google Scholar 

  15. Koelsche C, Schrimpf D, Tharun L et al (2017) Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin Sarcoma Res 7:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kuhlen M, Borkhardt A (2015) Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. Eur J Pediatr 174:987–997

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lo Muzio L (2008) Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis 3:32

    Article  PubMed  PubMed Central  Google Scholar 

  18. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  19. McBride KA, Ballinger ML, Killick E, Kirk J, Tattersall MH, Eeles RA, Thomas DM, Mitchell G (2014) Li–Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol 11:260–271

    Article  PubMed  CAS  Google Scholar 

  20. Nair P, Das KK, Srivastava AK, Sahu RN, Kumar R, Yadava K, Pandey R (2017) Primary intracranial rhabdomyosarcoma of the cerebellopontine angle mimicking a vestibular schwannoma in a child. Asian J Neurosurg 12:109–111

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ognjanovic S, Martel G, Manivel C, Olivier M, Langer E, Hainaut P (2012) Low prevalence of TP53 mutations and MDM2 amplifications in pediatric rhabdomyosarcoma. Sarcoma 2012:492086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ognjanovic S, Olivier M, Bergemann TL, Hainaut P (2012) Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 118:1387–1396

    Article  PubMed  CAS  Google Scholar 

  23. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Palta M, Riedel RF, Vredenburgh JJ, Cummings TJ, Green S, Chang Z, Kirkpatrick JP (2011) Primary meningeal rhabdomyosarcoma. Sarcoma 2011:312802

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paulus W, Slowik F, Jellinger K (1991) Primary intracranial sarcomas: histopathological features of 19 cases. Histopathology 18:395–402

    Article  PubMed  CAS  Google Scholar 

  26. Ripperger T, Bielack SS, Borkhardt A et al (2017) Childhood cancer predisposition syndromes—a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 173:1017–1037

    Article  PubMed  Google Scholar 

  27. Sahm F, Schrimpf D, Jones DT et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910

    Article  PubMed  CAS  Google Scholar 

  28. Sahm F, Schrimpf D, Stichel D et al (2017) DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 18:682–694

    Article  PubMed  CAS  Google Scholar 

  29. Schultz KA, Harris A, Messinger Y, Sencer S, Baldinger S, Dehner LP, Hill DA (2016) Ovarian tumors related to intronic mutations in DICER1: a report from the international ovarian and testicular stromal tumor registry. Fam Cancer 15:105–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Seki M, Nishimura R, Yoshida K et al (2015) Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun 6:7557

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shern JF, Chen L, Chmielecki J et al (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4:216–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sturm D, Orr BA, Toprak UH et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  PubMed  CAS  Google Scholar 

  34. Taratuto AL, Molina HA, Diez B, Zuccaro G, Monges J (1985) Primary rhabdomyosarcoma of brain and cerebellum. Report of four cases in infants: an immunohistochemical study. Acta Neuropathol 66:98–104

    Article  PubMed  CAS  Google Scholar 

  35. Verrier F, Dubois d’Enghien C, Gauthier-Villars M, Bonadona V, Faure-Conter C, Dijoud F, Stoppa-Lyonnet D, Houdayer C, Golmard L (2018) Mutiple DICER1-related lesions associated with a germline deep intronic mutation. Pediatr Blood Cancer 65:e27005

    Article  PubMed  CAS  Google Scholar 

  36. Vujanic GM, Kelsey A, Perlman EJ, Sandstedt B, Beckwith JB (2007) Anaplastic sarcoma of the kidney: a clinicopathologic study of 20 cases of a new entity with polyphenotypic features. Am J Surg Pathol 31:1459–1468

    Article  PubMed  Google Scholar 

  37. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wu MK, Vujanic GM, Fahiminiya S, Watanabe N, Thorner PS, O’Sullivan MJ, Fabian MR, Foulkes WD (2018) Anaplastic sarcomas of the kidney are characterized by DICER1 mutations. Mod Pathol 31:169–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Microarray Unit of the Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), for providing excellent methylation services. The work was supported by the German Cancer Aid (Grant 70112499). The study was in part supported by Grants from the Friedberg Charitable Foundation and the Sohn Conference Foundation (to M.S.), by the Fördergemeinschaft Kinderkrebs-Zentrum Hamburg (to U.S.), and by the Damp Foundation (to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas von Deimling.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2018_1871_MOESM1_ESM.tif

Supplementary Figure 1 (Online Resource 2): Case with an outstanding heterogeneous morphology. This triple positive case (myogenin, desmin, α-smooth muscle actin) exhibits a striking variation in morphological patterns. This case exhibits areas with increased cellularity of polygonal to spindle-shaped tumor cells (a) and areas with less cellularity and a myxoid tumor matrix, occasionally accompanied with a perivascular accentuation of tumor cells (b). In these areas, some cells are suspicious for rhabdomyoblasts (arrows). The tumor focally exhibits a hyaline collagenous matrix (c). A substantial proportion of the tumor bulk is composed of prominent cartilaginous differentiation (d). Inlets show the myogenin expression in the corresponding area shown in the H&E. Scale bars equal 100 μm (TIFF 24373 kb)

Supplementary Table 1 (Online Resource 1): Case numbers of the DNA-methylation reference set (XLSX 10 kb)

Supplementary Table 2 (Online Resource 3): Histologic features and immunophenotype (XLSX 13 kb)

401_2018_1871_MOESM4_ESM.xlsx

Supplementary Table 3 (Online Resource 4): Molecular results. Variants called by next generation sequencing are depicted in a two-tier ranking of evidence separated in probably (red colored) and possibly (blue colored) clinically relevant. Copy number alterations of the respective genes were calculated from array-generated methylation data (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koelsche, C., Mynarek, M., Schrimpf, D. et al. Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathol 136, 327–337 (2018). https://doi.org/10.1007/s00401-018-1871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1871-6

Keywords

Navigation