Skip to main content

Advertisement

Log in

The influence of orbital decompression on objective nasal function in patients with graves’ orbitopathy

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

To determine the influence of anatomical changes after orbital decompression to nasal function.

Methods

We examined postoperative nasal function after orbital decompression in patients with GO in a prospective study. 25 patients were enrolled between 2014 and 2016. Sense of smell (Sniffin’ Test) and nasal airflow (anterior rhinomanometry) were tested pre- and 6 weeks postoperatively. In addition, postoperative incidence of sinus infections, persistent pressure pain, and infraorbital hypoesthesia were assessed by means of a questionnaire.

Results

The olfactory performance showed a significant increase (p < 0.05) after surgery, while the nasal airflow significantly decreased (p < 0.05). Acute sinus infection occurred in three, infraorbital sensibility disorders in eight cases within the first 6 weeks after surgery. No persistent pain was recorded.

Conclusion

We demonstrate that decompression of the medial orbital wall leads to a decrease in nasal airflow, whereof patients should be informed before the procedure. This is most likely due to a medialization of the medial turbinate and the prolapse of orbital content into the nasal cavity. The increase of the olfactory performance is, in our opinion, more likely due to variation within the standard deviation than to anatomical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eckstein A, Dekowski D, Fuhrer-Sakel D, Berchner-Pfannschmidt U, Esser J (2016) Graves’ ophthalmopathy. Ophthalmologe 113(4):349–364. https://doi.org/10.1007/s00347-016-0239-3 (quiz 465–346)

    Article  PubMed  CAS  Google Scholar 

  2. Bahn RS (2012) Autoimmunity and Graves’ disease. Clin Pharmacol Ther 91(4):577–579. https://doi.org/10.1038/clpt.2012.10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM, European Group on Graves O (2016) The 2016 European thyroid association/European group on Graves’ Orbitopathy guidelines for the Management of Graves’ Orbitopathy. Eur Thyroid J 5(1):9–26. https://doi.org/10.1159/000443828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Oeverhaus M, Witteler T, Lax H, Esser J, Fuhrer D, Eckstein A (2017) Combination therapy of intravenous steroids and orbital irradiation is more effective than intravenous steroids alone in patients with Graves’ orbitopathy. Horm Metab Res 49(10):739–747. https://doi.org/10.1055/s-0043-116945

    Article  PubMed  CAS  Google Scholar 

  5. Eckstein A, Schittkowski M, Esser J (2012) Surgical treatment of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 26(3):339–358. https://doi.org/10.1016/j.beem.2011.11.002

    Article  PubMed  Google Scholar 

  6. Baldeschi L (2007) Orbital decompression. In: Wiersinga WM, Kahaly G (eds) Graves’ orbitopathy: a multidisciplinary approach. Karger, Basel, pp 163–175

    Chapter  Google Scholar 

  7. Baldeschi L (2008) Correction of lid retraction and exophthalmos. Dev Ophthalmol 41:103–126. https://doi.org/10.1159/000131084

    Article  PubMed  Google Scholar 

  8. European Group on Graves O, Mourits MP, Bijl H, Altea MA, Baldeschi L, Boboridis K, Curro N, Dickinson AJ, Eckstein A, Freidel M, Guastella C, Kahaly GJ, Kalmann R, Krassas GE, Lane CM, Lareida J, Marcocci C, Marino M, Nardi M, Mohr C, Neoh C, Pinchera A, Orgiazzi J, Pitz S, Saeed P, Salvi M, Sellari-Franceschini S, Stahl M, von Arx G, Wiersinga WM (2009) Outcome of orbital decompression for disfiguring proptosis in patients with Graves’ orbitopathy using various surgical procedures. Br J Ophthalmol 93(11):1518–1523. https://doi.org/10.1136/bjo.2008.149302

    Article  Google Scholar 

  9. Ezra DG, Rose GE (2014) Old and new: evidence-based evaluation of interventions for Graves’ orbitopathy. Br J Ophthalmol 98(3):287–288. https://doi.org/10.1136/bjophthalmol-2013-303648

    Article  PubMed  Google Scholar 

  10. Paridaens D, Lie A, Grootendorst RJ, van den Bosch WA (2006) Efficacy and side effects of ‘swinging eyelid’ orbital decompression in Graves’ orbitopathy: a proposal for standardized evaluation of diplopia. Eye (Lond) 20(2):154–162. https://doi.org/10.1038/sj.eye.6701827

    Article  CAS  Google Scholar 

  11. Sellari-Franceschini S, Dallan I, Bajraktari A, Fiacchini G, Nardi M, Rocchi R, Marcocci C, Marino M, Casani AP (2016) Surgical complications in orbital decompression for Graves’ orbitopathy. Acta Otorhinolaryngol Ital 36(4):265–274. https://doi.org/10.14639/0392-100X-1082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Leone CR Jr, Piest KL, Newman RJ (1989) Medial and lateral wall decompression for thyroid ophthalmopathy. Am J Ophthalmol 108(2):160–166

    Article  PubMed  Google Scholar 

  13. Hopkins C, Browne JP, Slack R, Lund VJ, Topham J, Reeves BC, Copley LP, Brown P, van der Meulen JH (2006) Complications of surgery for nasal polyposis and chronic rhinosinusitis: the results of a national audit in England and Wales. Laryngoscope 116(8):1494–1499. https://doi.org/10.1097/01.mlg.0000230399.24306.50

    Article  PubMed  Google Scholar 

  14. Stankiewicz JA, Lal D, Connor M, Welch K (2011) Complications in endoscopic sinus surgery for chronic rhinosinusitis: a 25-year experience. Laryngoscope 121(12):2684–2701. https://doi.org/10.1002/lary.21446

    Article  PubMed  Google Scholar 

  15. Schluter A, Ahmadipour Y, Vogelsang T, Kreitschmann-Andermahr I, Kleist B, Weller P, Holtmann L, Mattheis S, Lang S, Bergmann C, Mueller O (2016) Evaluation of the application of rhino-septal splints in endoscopic transsphenoidal skull base surgery. Eur Arch Otorhinolaryngol 273(12):4571–4578. https://doi.org/10.1007/s00405-016-4179-y

    Article  PubMed  Google Scholar 

  16. Andrews PJ, Poirrier AL, Lund VJ, Choi D (2016) Outcomes in endoscopic sinus surgery: olfaction, nose scale and quality of life in a prospective cohort study. Clin Otolaryngol 41(6):798–803. https://doi.org/10.1111/coa.12665

    Article  PubMed  CAS  Google Scholar 

  17. Chen XB, Lee HP, Chong VF, Wang de Y (2011) Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery. Am J Rhinol Allergy 25(6):388–392. https://doi.org/10.2500/ajra.2011.25.3669

    Article  PubMed  Google Scholar 

  18. Nishijima H, Kondo K, Nomura T, Yamasoba T (2017) Ethmoidectomy combined with superior meatus enlargement increases olfactory airflow. Laryngoscope Investig Otolaryngol 2(4):136–146. https://doi.org/10.1002/lio2.59

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whitcroft KL, Andrews PJ, Randhawa PS (2017) Peak nasal inspiratory flow correlates with quality of life in functional endoscopic sinus surgery. Clin Otolaryngol 42(6):1187–1192. https://doi.org/10.1111/coa.12859

    Article  PubMed  CAS  Google Scholar 

  20. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life—an updated review. Chem Senses 39(3):185–194. https://doi.org/10.1093/chemse/bjt072

    Article  PubMed  Google Scholar 

  21. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1):39–52

    Article  PubMed  CAS  Google Scholar 

  22. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264(3):237–243. https://doi.org/10.1007/s00405-006-0173-0

    Article  PubMed  CAS  Google Scholar 

  23. Maranta C (1993) Rhinomanometrische Resultate und subjektive Wertung nach Septumplastik und Conchotomie. In: Aktuelle Probleme der Otorhinolaryngologie. Verlag Hans Huber, Bern

  24. Oh SR, Tung JD, Priel A, Levi L, Granet DB, Korn BS, Kikkawa DO (2013) Reduction of orbital inflammation following decompression for thyroid-related orbitopathy. Biomed Res Int 2013:794984. https://doi.org/10.1155/2013/794984

    Article  PubMed  PubMed Central  Google Scholar 

  25. Garrity JA, Fatourechi V, Bergstralh EJ, Bartley GB, Beatty CW, DeSanto LW, Gorman CA (1993) Results of transantral orbital decompression in 428 patients with severe Graves’ ophthalmopathy. Am J Ophthalmol 116(5):533–547

    Article  PubMed  CAS  Google Scholar 

  26. Friedman M, Tanyeri H, Landsberg R, Caldarelli D (1999) Effects of middle turbinate medialization on olfaction. Laryngoscope 109(9):1442–1445. https://doi.org/10.1097/00005537-199909000-00016

    Article  PubMed  CAS  Google Scholar 

  27. Levy JM, Mace JC, Sansoni ER, Soler ZM, Smith TL (2016) Longitudinal improvement and stability of olfactory function in the evaluation of surgical management for chronic rhinosinusitis. Int Forum Allergy Rhinol 6(11):1188–1195. https://doi.org/10.1002/alr.21800

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baldeschi L, Wakelkamp IM, Lindeboom R, Prummel MF, Wiersinga WM (2006) Early versus late orbital decompression in Graves’ orbitopathy: a retrospective study in 125 patients. Ophthalmology 113(5):874–878. https://doi.org/10.1016/j.ophtha.2005.10.060

    Article  PubMed  Google Scholar 

  29. Kingdom TT, Davies BW, Durairaj VD (2015) Orbital decompression for the management of thyroid eye disease: an analysis of outcomes and complications. Laryngoscope 125(9):2034–2040. https://doi.org/10.1002/lary.25320

    Article  PubMed  Google Scholar 

  30. Sellari-Franceschini S, Berrettini S, Santoro A, Nardi M, Mazzeo S, Bartalena L, Mazzi B, Tanda ML, Marcocci C, Pinchera A (2005) Orbital decompression in graves’ ophthalmopathy by medial and lateral wall removal. Otolaryngol Head Neck Surg 133(2):185–189. https://doi.org/10.1016/j.otohns.2005.02.006

    Article  PubMed  Google Scholar 

  31. Gulati S, Ueland HO, Haugen OH, Danielsen A, Rodahl E (2015) Long-term follow-up of patients with thyroid eye disease treated with endoscopic orbital decompression. Acta Ophthalmol 93(2):178–183. https://doi.org/10.1111/aos.12469

    Article  PubMed  Google Scholar 

  32. Iacobaeus L, Sahlin S (2016) Evaluation of quality of life in patients with Graves ophthalmopathy, before and after orbital decompression. Orbit 35(3):121–125. https://doi.org/10.1080/01676830.2016.1176049

    Article  PubMed  Google Scholar 

  33. Yao WC, Sedaghat AR, Yadav P, Fay A, Metson R (2016) Orbital decompression in the endoscopic age: the modified inferomedial orbital strut. Otolaryngol Head Neck Surg 154(5):963–969. https://doi.org/10.1177/0194599816630722

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive any financial support toward the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Stähr.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interests or financial interests in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stähr, K., Holtmann, L., Schlüter, A. et al. The influence of orbital decompression on objective nasal function in patients with graves’ orbitopathy. Eur Arch Otorhinolaryngol 275, 2507–2513 (2018). https://doi.org/10.1007/s00405-018-5105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5105-2

Keywords

Navigation