Skip to main content

Advertisement

Log in

Comparative analysis of oncofetal fibronectin and tenascin-C expression in right atrial auricular and left ventricular human cardiac tissue from patients with coronary artery disease and aortic valve stenosis

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Aortic valve stenosis (AVS) and coronary artery disease (CAD) are accompanied by changes in the cardiac extra cellular matrix (cECM) including the re-expression of oncofetal fibronectin (Fn) and tenascin-C (Tn-C) variants. Human antibodies against these variants are usable for targeted therapy. Aim of the study was the comparative analysis of cECM remodelling in tissue samples from right atrial auricle (RAA) and left ventricular septum (LVS). RAA and LVS specimens from 30 patients (17 × AVS; 13 × AVS+CAD) were analysed with respect to histological changes and ECM remodelling using PCR based ECM gene expression profiling. Re-expression of ED-A+ Fn and A1+ Tn-C was investigated on the mRNA and on the protein level. For immunofluorescence, human recombinant small immunoprotein (SIP) format antibodies were used. There was a positive correlation of the grade of histological changes in RAA and corresponding LVS samples (r = 0.695). ECM gene expression levels were higher in LVS compared to RAA. For 24 genes, a corresponding relevant (>2.5-fold) up- or down-regulation in RAA and LVS occurred. Using SIP antibodies, a positive correlation of protein deposition levels in RAA and corresponding LVS (r = 0.818) could be shown for ED-A+ Fn. Cardiac tissue remodelling is likely a process involving the entire heart reflected by intra-individually comparable histology and cECM changes in RAA and LVS samples. ED-A+ Fn might be an excellent target for an antibody-mediated delivery of diagnostic or therapeutic agents. The RAA is a valuable and representative tool to evaluate cardiac remodelling and to plan individualized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol 160:2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Berndt A, Borsi L, Hyckel P, Kosmehl H (2001) Fibrillary co-deposition of laminin-5 and large unspliced tenascin-C in the invasive front of oral squamous cell carcinoma in vivo and in vitro. J Cancer Res Clin Oncol 127:286–292

    Article  PubMed  CAS  Google Scholar 

  • Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Biro A, Siri A, Orecchia P, Grassi J, Neri D, Zardi L (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102:4384–4392

    Article  PubMed  CAS  Google Scholar 

  • Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687 Review

    Article  PubMed  CAS  Google Scholar 

  • Cohn NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278 Review

    Article  Google Scholar 

  • Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582 Review

    Article  PubMed  CAS  Google Scholar 

  • Dean RG, Balding LC, Candido R, Burns WC, Cao Z, Twigg SM, Burrell LM (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256

    Article  PubMed  CAS  Google Scholar 

  • Eichhorn ME, Strieth S, Dellian M (2004) Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resist Updat 7:125–138

    Article  PubMed  CAS  Google Scholar 

  • Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL (1995) Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27:981–990 Review

    Article  PubMed  CAS  Google Scholar 

  • Fondard O, Detaint D, Iung B, Choqueux C, Adle-Biassette H, Jarraya M, Hvass U, Couetil JP, Henin D, Michel JB, Vahanian A, Jacob MP (2005) Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 26:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Hansen T, Borsi L, Geier C, Hyckel P, Schleier P, Richter P, Altendorf-Hofmann A, Kosmehl H, Berndt A (2007) A quantitative co-localization analysis of large unspliced tenascin-C(L) and laminin-5/gamma2-chain in basement membranes of oral squamous cell carcinoma by confocal laser scanning microscopy. J Oral Pathol Med 36:6–11

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Brehm BR, Richter P, Gruen K, Neri D, Kosmehl H, Hekmat K, Renner A, Gummert J, Figulla HR, Berndt A (2010) Changes in extra cellular matrix remodelling and re-expression of fibronectin and tenascin-C splicing variants in human myocardial tissue of the right atrial auricle: implications for a targeted therapy of cardiovascular diseases using human SIP format antibodies. J Mol Histol 41:39–50

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto N, Onishi K, Sato A, Terasaki F, Tsukada B, Nozato T, Yamada T, Imanaka-Yoshida K, Yoshida T, Ito M, Hiroe M (2009) Incremental prognostic values of serum tenascin-C levels with blood B-type natriuretic peptide testing at discharge in patients with dilated cardiomyopathy and decompensated heart failure. J Card Fail 15:898–905

    Article  PubMed  CAS  Google Scholar 

  • Gabler U, Berndt A, Kosmehl H, Mandel U, Zardi L, Müller S, Stelzner A, Katenkamp D (1996) Matrix remodelling in dilated cardiomyopathy entails the occurrence of oncofetal fibronectin molecular variants. Heart 75:358–362

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsen A, Lawler PR, Yongzhong W, Steinbrüchel D, Blagoja D, Paulsson-Berne G, Kastrup J, Hansson GK (2007) Gene expression signals involved in ischemic injury, extracellular matrix composition and fibrosis defined by global mRNA profiling of the human left ventricular myocardium. J Mol Cell Cardiol 42:870–883

    Article  PubMed  CAS  Google Scholar 

  • Graham HK, Horn M, Trafford AW (2008) Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol 194:3–21 Review

    Article  CAS  Google Scholar 

  • Hall JL, Grindle S, Han X, Fermin D, Park S, Chen Y, Bache RJ, Mariash A, Guan Z, Ormaza S, Thompson J, Graziano J, de Sam Lazaro SE, Pan S, Simari RD, Miller LW (2004) Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics 17:283–291

    Article  PubMed  CAS  Google Scholar 

  • Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, Dzau VJ, Liew CC (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics 10:31–44

    PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida K, Hiroe M, Yoshida T (2004) Interaction between cell and extracellular matrix in heart disease: multiple roles of tenascin-C in tissue remodeling. Histol Histopathol 19:517–525 Review

    PubMed  CAS  Google Scholar 

  • Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E, Conte JV, Tomaselli G, Garcia JG, Hare JM (2005) Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics 21:299–307

    Article  PubMed  CAS  Google Scholar 

  • Koitabashi N, Arai M, Niwano K, Watanabe A, Endoh M, Suguta M, Yokoyama T, Tada H, Toyama T, Adachi H, Naito S, Oshima S, Nishida T, Kubota S, Takigawa M, Kurabayashi M (2008) Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur J Heart Fail 10:373–379

    Article  PubMed  CAS  Google Scholar 

  • Mårlind J, Kaspar M, Trachsel E, Sommavilla R, Hindle S, Bacci C, Giovannoni L, Neri D (2008) Antibody-mediated delivery of interleukin-2 to the stroma of breast cancer strongly enhances the potency of chemotherapy. Clin Cancer Res 14:6515–6524

    Article  PubMed  Google Scholar 

  • Pedretti M, Soltermann A, Arni S, Weder W, Neri D, Hillinger S (2009) Comparative immunohistochemistry of L19 and F16 in non-small cell lung cancer and mesothelioma: two human antibodies investigated in clinical trials in patients with cancer. Lung Cancer 64:28–33

    Article  PubMed  Google Scholar 

  • Pedretti M, Rancic Z, Soltermann A, Herzog BA, Schliemann C, Lachat M, Neri D, Kaufmann PA (2010) Comparative immunohistochemical staining of atherosclerotic plaques using F16, F8 and L19: Three clinical-grade fully human antibodies. Atherosclerosis 208:382–389

    Article  PubMed  CAS  Google Scholar 

  • Rybak JN, Trachsel E, Scheuermann J, Neri D (2007) Ligand-based vascular targeting of disease. ChemMedChem 2:22–40 Review

    Article  PubMed  CAS  Google Scholar 

  • Schliemann C, Neri D (2010) Antibody-based vascular tumor targeting. Recent Results Cancer Res 180:201–216 Review

    Article  PubMed  CAS  Google Scholar 

  • Schwager K, Kaspar M, Bootz F, Marcolongo R, Paresce E, Neri D, Trachsel E (2009) Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res Ther 11:R142

    Article  PubMed  Google Scholar 

  • Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262 Review

    PubMed  CAS  Google Scholar 

  • Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, Sakakura T, Yoshida T (2005) Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 167:71–80

    Article  PubMed  CAS  Google Scholar 

  • Terasaki F, Okamoto H, Onishi K, Sato A, Shimomura H, Tsukada B, Imanaka-Yoshida K, Hiroe M, Yoshida T, Kitaura Y, Kitabatake A (2007) Higher serum tenascin-C levels reflect the severity of heart failure, left ventricular dysfunction and remodeling in patients with dilated cardiomyopathy. Study Group for Intractable Diseases by a Grant from the Ministry of Health, Labor and Welfare of Japan. Circ J 71:327–330

    Article  PubMed  CAS  Google Scholar 

  • Trachsel E, Neri D (2006) Antibodies for angiogenesis inhibition, vascular targeting and endothelial cell transcytosis. Adv Drug Deliv Rev 58:735–754 Review

    Article  PubMed  CAS  Google Scholar 

  • Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rösli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413

    Article  PubMed  CAS  Google Scholar 

  • Weber KT (2004) Fibrosis in hypertensive heart disease: focus on cardiac fibroblasts. J Hypertens 22:47–50

    Article  PubMed  CAS  Google Scholar 

  • Wight TN (2008) Arterial remodeling in vascular disease: a key role for hyaluronan and versican. Front Biosci 13:4933–4937 Review

    Article  PubMed  CAS  Google Scholar 

  • Willems IE, Arends JW, Daemen MJ (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325

    Article  PubMed  CAS  Google Scholar 

  • Yang DC, Ma ST, Tan Y, Chen YH, Li D, Tang B, Chen JS, Su XH, Li G, Zhang X, Yang YJ (2010) Imbalance of matrix metalloproteinases/tissue inhibitor of metalloproteinase-1 and loss of fibronectin expression in patients with congestive heart failure. Cardiology 116:133–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Claudia Seliger for excellent technical assistance. The research leading to the results has received funding from the Friedrich Schiller University of Jena and from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. Health-F2-2008-201342 (ADAMANT).

Conflict of interest

Dario Neri is a co-founder and shareholder of Philogen, the company which owns the rights over the F8 and the F16 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldinger, A., Brehm, B.R., Richter, P. et al. Comparative analysis of oncofetal fibronectin and tenascin-C expression in right atrial auricular and left ventricular human cardiac tissue from patients with coronary artery disease and aortic valve stenosis. Histochem Cell Biol 135, 427–441 (2011). https://doi.org/10.1007/s00418-011-0809-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0809-z

Keywords

Navigation