Skip to main content

Advertisement

Log in

Obliterative airway remodelling in transplanted and non-transplanted lungs

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Obliterative airway remodelling is a morphological sequence in a variety of pulmonary diseases. Notably, bronchiolitis obliterans represents one of the key complications of lung transplantation, induced by (immigrating) myofibroblasts. A comparative expression analysis of obliterative airway remodelling in transplanted and non-transplanted patients has not been reported so far. Obliterated and unremodelled airways from explanted lungs (n = 19) from patients suffering from chronic allograft dysfunction, infection, graft-versus-host disease and toxic exposure were isolated by laser-assisted microdissection. Airways from lung allografts harvested shortly before and after transplantation (n = 4) as well as fibroblastic foci from lungs with interstitial pulmonary fibrosis (n = 4) served as references. Pre-amplified cDNA was analysed by quantitative real-time RT-PCR for expression of fibrosis, inflammation and apoptosis-associated genes. Composition of infiltrating cells and protein expression were assessed by conventional histology and immunohistochemistry. Bronchiolitis obliterans in transplanted patients showed a significant increase of BMP-7 expression (p = 0.0141 compared with controls), while TGF-β1 and FGF-2 as well as BMP-4 and BMP-7 were up-regulated in fibroblastic foci in interstitial pulmonary fibrosis (p < 0.0424 compared with controls). Regarding other fibrosis-associated genes (BMP-6, SMAD-3, CASP-3 and CASP-9, FASLG, NF-KB1, IL-1 and IL-2) as well as cellularity and cellular composition, no significant differences between obliterative airway remodelling in transplanted and non-transplanted patients could be shown. Obliterative airway remodelling in lung allografts and in non-transplanted patients share many morphological and genetic traits. BMPs, especially BMP-7, warrant further investigation as possible markers for the aggravation of airway remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bergeron C, Al-Ramli W, Hamid Q (2009) Remodeling in asthma. Proc Am Thorac Soc 6:301–305

    Article  PubMed  Google Scholar 

  2. Belperio JA, Weigt SS, Fishbein MC, Lynch JP 3rd (2009) Chronic lung allograft rejection: mechanisms and therapy. Proc Am Thorac Soc 6:108–121

    Article  CAS  PubMed  Google Scholar 

  3. Laurent GJ, Chambers RC, Hill MR, McAnulty RJ (2007) Regulation of matrix turnover: fibroblasts, forces, factors and fibrosis. Biochem Soc Trans 35:647–651

    Article  CAS  PubMed  Google Scholar 

  4. Eyden B (2008) The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med 12:22–37

    Article  CAS  PubMed  Google Scholar 

  5. Brocker V, Langer F, Fellous TG, Mengel M, Brittan M, Bredt M, Milde S, Welte T, Eder M, Haverich A, Alison MR, Kreipe H, Lehmann U (2006) Fibroblasts of recipient origin contribute to bronchiolitis obliterans in human lung transplants. Am J Respir Crit Care Med 173:1276–1282

    Article  PubMed  Google Scholar 

  6. Rosendahl A, Pardali E, Speletas M, Ten Dijke P, Heldin CH, Sideras P (2002) Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am J Respir Cell Mol Biol 27:160–169

    CAS  PubMed  Google Scholar 

  7. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217

    Article  CAS  PubMed  Google Scholar 

  9. Aris RM, Walsh S, Chalermskulrat W, Hathwar V, Neuringer IP (2002) Growth factor upregulation during obliterative bronchiolitis in the mouse model. Am J Respir Crit Care Med 166:417–422

    Article  PubMed  Google Scholar 

  10. Jonigk D, Lehmann U, Stuht S, Wilhelmi M, Haverich A, Kreipe H, Mengel M (2007) Recipient-derived neoangiogenesis of arterioles and lymphatics in quilty lesions of cardiac allografts. Transplantation 84:1335–1342

    Article  PubMed  Google Scholar 

  11. Theophile K, Jonigk D, Kreipe H, Bock O (2008) Amplification of mRNA from laser-microdissected single or clustered cells in formalin-fixed and paraffin-embedded tissues for application in quantitative real-time PCR. Diagn Mol Pathol 17:101–106

    Article  CAS  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  13. Sato M, Keshavjee S (2008) Bronchiolitis obliterans syndrome: alloimmune-dependent and -independent injury with aberrant tissue remodeling. Semin Thorac Cardiovasc Surg 20:173–182

    Article  PubMed  Google Scholar 

  14. Ward C, De Soyza A, Fisher AJ, Pritchard G, Forrest I, Corris P (2005) A descriptive study of small airway reticular basement membrane thickening in clinically stable lung transplant recipients. J Heart Lung Transplant 24:533–537

    Article  PubMed  Google Scholar 

  15. Van Raemdonck D, Neyrinck A, Verleden GM, Dupont L, Coosemans W, Decaluwe H, Decker G, De Leyn P, Nafteux P, Lerut T (2009) Lung donor selection and management. Proc Am Thorac Soc 6:28–38

    Article  PubMed  Google Scholar 

  16. Kuwano K (2008) Involvement of epithelial cell apoptosis in interstitial lung diseases. Intern Med 47:345–353

    Article  PubMed  Google Scholar 

  17. Mizuta M, Nakajima H, Mizuta N, Kitamura Y, Nakajima Y, Hashimoto S, Matsuyama H, Shime N, Amaya F, Koh H, Ishizaka A, Magae J, Tanuma SI (2008) Fas ligand released by activated monocytes causes apoptosis of lung epithelial cells in human acute lung injury model in vitro. Biol Pharm Bull 31:386–390

    Article  CAS  PubMed  Google Scholar 

  18. Sara AG, Hamdan AJ, Hanaa B, Nawaz KA (2008) Bronchiolitis obliterans organizing pneumonia: pathogenesis, clinical features, imaging and therapy review. Ann Thorac Med 3:67–75

    Article  Google Scholar 

  19. Strieter RM (2005) Pathogenesis and natural history of usual interstitial pneumonia the whole story or the last chapter of a long novel. Chest 128:526–532

    Article  Google Scholar 

  20. Warburton D, Bellusci S (2004) The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev 5(Suppl A):283–287

    Article  Google Scholar 

  21. Ge G, Greenspan DS (2006) BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 175:111–120

    Article  CAS  PubMed  Google Scholar 

  22. Hopkins DR, Keles S, Greenspan DS (2007) The bone morphogenetic protein 1/tolloid-like metalloproteinases. Matrix Biol 26:508–523

    Article  CAS  PubMed  Google Scholar 

  23. Langenfeld EM, Calvano SE, Abou-Nukta F, Lowry SF, Amenta P, Langenfeld J (2003) The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis 24:1445–1454

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen TQ, Goldschmeding R (2008) Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res 25:2416–2426

    Article  CAS  PubMed  Google Scholar 

  25. Tacke F, Gabele E, Bataille F, Schwabe RF, Hellerbrand C, Klebl F, Straub RH, Luedde T, Manns MP, Trautwein C, Brenner DA, Scholmerich J, Schnabl B (2007) Bone morphogenetic protein 7 is elevated in patients with chronic liver disease and exerts fibrogenic effects on human hepatic stellate cells. Dig Dis Sci 52:3404–3415

    Article  CAS  PubMed  Google Scholar 

  26. Koli K, Myllarniemi M, Vuorinen K, Salmenkivi K, Ryynanen MJ, Kinnula VL, Keski-Oja J (2006) Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am J Pathol 169:61–71

    Article  CAS  PubMed  Google Scholar 

  27. Molloy EL, Adams A, Moore JB, Masterson JC, Madrigal-Estebas L, Mahon BP, O'Dea S (2008) BMP4 induces an epithelial-mesenchymal transition-like response in adult airway epithelial cells. Growth Factors 26:12–22

    Article  CAS  PubMed  Google Scholar 

  28. Kariyawasam HH, Xanthou G, Barkans J, Aizen M, Kay AB, Robinson DS (2008) Basal expression of bone morphogenetic protein receptor is reduced in mild asthma. Am J Respir Crit Care Med 177:1074–1081

    Article  PubMed  Google Scholar 

  29. Board TN, Rooney P, Kay PR (2008) Strain imparted during impaction grafting may contribute to bony incorporation: an in vitro study of the release of bmp-7 from allograft. J Bone Joint Surg Br 90:821–824

    Article  CAS  PubMed  Google Scholar 

  30. Saika S, Ikeda K, Yamanaka O, Flanders KC, Nakajima Y, Miyamoto T, Ohnishi Y, Kao WW, Muragaki Y, Ooshima A (2005) Therapeutic effects of adenoviral gene transfer of bone morphogenic protein-7 on a corneal alkali injury model in mice. Lab Invest 85:474–486

    Article  CAS  PubMed  Google Scholar 

  31. You L, Kruse FE (2002) Differential effect of activin A and BMP-7 on myofibroblast differentiation and the role of the Smad signaling pathway. Invest Ophthalmol Vis Sci 43:72–81

    PubMed  Google Scholar 

  32. Hayashi M, Muneta T, Ju YJ, Mochizuki T, Sekiya I (2008) Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther 10:R118

    Article  PubMed  Google Scholar 

  33. Wang S, de Caestecker M, Kopp J, Mitu G, Lapage J, Hirschberg R (2006) Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol 17:2504–2512

    Article  CAS  PubMed  Google Scholar 

  34. Zeisberg M, Kalluri R (2008) Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr Nephrol 23:1395–1398

    Article  PubMed  Google Scholar 

  35. Weiskirchen R, Meurer SK, Gressner OA, Herrmann J, Borkham-Kamphorst E, Gressner AM (2009) BMP-7 as antagonist of organ fibrosis. Front Biosci 14:4992–5012

    PubMed  Google Scholar 

  36. Sun J, Chen H, Chen C, Whitsett JA, Mishina Y, Bringas P Jr, Ma JC, Warburton D, Shi W (2008) Prenatal lung epithelial cell-specific abrogation of Alk3-bone morphogenetic protein signaling causes neonatal respiratory distress by disrupting distal airway formation. Am J Pathol 172:571–582

    Article  CAS  PubMed  Google Scholar 

  37. Murray LA, Hackett TL, Warner SM, Shaheen F, Argentieri RL, Dudas P, Farrell FX, Knight DA (2008) BMP-7 does not protect against bleomycin-induced lung or skin fibrosis. PLoS ONE 3:4039

    Article  Google Scholar 

  38. Krebs R, Tikkanen JM, Nykanen AI, Wood J, Jeltsch M, Yla-Herttuala S, Koskinen PK, Lemstrom KB (2005) Dual role of vascular endothelial growth factor in experimental obliterative bronchiolitis. Am J Respir Crit Care Med 171:1421–1429

    Article  PubMed  Google Scholar 

  39. Shin JH, Shim JW, Kim DS, Shim JY (2009) TGF-beta effects on airway smooth muscle cell proliferation, VEGF release and signal transduction pathways. Respirology 14:347–353

    Article  PubMed  Google Scholar 

  40. Hollmen M, Tikkanen JM, Nykanen AI, Koskinen PK, Lemstrom KB (2008) Tacrolimus treatment effectively inhibits progression of obliterative airway disease even at later stages of disease development. J Heart Lung Transplant 27:856–864

    Article  PubMed  Google Scholar 

  41. Bartlett JA, Fischer AJ, McCray PB Jr (2008) Innate immune functions of the airway epithelium. Contrib Microbiol 15:147–163

    Article  CAS  PubMed  Google Scholar 

  42. Panoskaltsis-Mortari A, Tram KV, Price AP, Wendt CH, Blazar BR (2007) A new murine model for bronchiolitis obliterans post-bone marrow transplant. Am J Respir Crit Care Med 176:713–723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gillian Teicke and Dr. Ho-Yen for editing the text.

Disclosure/conflicts of interest

This work is supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, KFO 123 LTx, to Danny Jonigk and Hans Kreipe) and by the Integriertes Forschungs- und Behandlungszentrum Transplantation (BMBF, IFB-Tx). The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Jonigk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonigk, D., Theophile, K., Hussein, K. et al. Obliterative airway remodelling in transplanted and non-transplanted lungs. Virchows Arch 457, 369–380 (2010). https://doi.org/10.1007/s00428-010-0949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-010-0949-x

Keywords

Navigation