Skip to main content
Log in

Quantitative analysis of Cryptosporidium growth in in vitro culture—the impact of parasite density on the success of infection

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cryptosporidium is an important waterborne pathogen for which no treatment or vaccination is available. This study set out to quantify DNA replication of Cryptosporidium parvum in vitro. Cryptosporidium DNA could be detected at up to 60 % of input level in both host-cell-free and host cell containing cultures 6 days after infection with living sporozoites, but was lost within 2 days in cultures inoculated with UV-inactivated sporozoites. Total DNA increased between days 2 and 6, evidence of successful DNA replication in both cell-free and host-cell-containing cultures. Overall however, only a small fraction (up to 5 %) of parasite DNA could be found associated with host cells or bound to plastic of the cell-free cultures, and the majority of parasite DNA was present in the cell culture medium, separable by simple decantation. After 2 days, in host-cell-containing cultures, the parasite DNA could be concentrated by slow centrifugation, suggesting that it was associated with intact parasite cells, but at 6 days, the majority could not be centrifuged and is therefore thought to have represented copies associated with dead and degraded parasites. In cell-free cultures and in larger plates, the majority of DNA was in this form. Performance of the parasite was best in small culture plates, and least in the largest plate sizes. We interpret these results as suggesting that Cryptosporidium sporozoites first bind to the host cell monolayer or to the plasticware, but then by 2 days, there has been a substantial release of parasites back into the medium. Host-cell-free cultures also supported modest replication and may have represented DNA synthesis in cells beginning merogony. The role of the host cells is unclear, as so much of the parasite DNA is released into the medium. Host cells may provide a feeder role, conditioning the medium for Cryptosporidium development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  CAS  PubMed  Google Scholar 

  • Aldeyarbi HM, Karanis P. 2015. The ultra-structural similarities between Cryptosporidium parvum and the Gregarines. J Eukaryot Microbiol. In press, doi: 10.1111/jeu.12250.

  • Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos-Gonzalez A, Cabada MM, Nichols J, Gomez G, White AC Jr (2013) Human primary intestinal epithelial cells as an improved in vitro model for Cryptosporidium parvum infection. Infect Immun 81:1996–2001. doi:10.1128/IAI.01131-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experimental challenge of healthy adults. Am J Trop Med Hyg 75:851–857

    CAS  PubMed  Google Scholar 

  • DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W (1995) The infectivity of Cryptosporidium parvumin healthy volunteers. N Engl J Med 332:855–859

    Article  CAS  PubMed  Google Scholar 

  • Escourt A (2011) Characterisation of Cryptosporidium growth and propagation in cell free environments. University of Murdoch, Dissertation

    Google Scholar 

  • Garvey M, Farrell H, Cormican M, Rowan N (2010) Investigations of the relationship between use of in vitro cellculture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline. J Microbiol Methods 80:267–273. doi:10.1016/j.mimet.2010.01.017

    Article  CAS  PubMed  Google Scholar 

  • Girouard D, Gallant J, Akiyoshi DE, Nunnari J, Tzipori S (2006) Failure to propagate Cryptosporidium spp. in cell-free culture. J Parasitol 92:399–400

    Article  PubMed  Google Scholar 

  • Hadfield SJ, Robinson G, Elwin K, Chalmers RM (2011) Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. J Clin Microbiol 49:918–924. doi:10.1128/JCM.01733-10

  • Hijjawi NS, Meloni BP, Morgan UM, Thompson RC (2001) Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol 31:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RC (2002) Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 32:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Hijjawi NS, Meloni BP, Ng’anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RC (2004) Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol 34:769–777

    Article  CAS  PubMed  Google Scholar 

  • Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U (2010) Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol 169:29–36. doi:10.1016/j.vetpar.2009.12.021

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Zhu H, Zhang S, Wang R, Liu L, Jian F, Ning C, Zhang L (2014) An in vitro model of infection of chicken embryos by Cryptosporidium baileyi. Exp Parasitol 147:41–47. doi:10.1016/j.exppara.2014.10.007

    Article  PubMed  Google Scholar 

  • Karanis P, Aldeyarbi HM (2011) Evolution of Cryptosporidium in vitro culture. Int J Parasitol 41:1231–1242. doi:10.1016/j.ijpara.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  • Koh W, Clode PL, Monis P, Thompson RC (2013) Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasit Vectors 6:270. doi:10.1186/1756-3305-6-270

    Article  PubMed  PubMed Central  Google Scholar 

  • Koloren Z, Dinçer S (2009) Transient expression of red and yellow fluorescent protein vectors in HCT-8 cells infected with Cryptosporidium parvum. Parasitol Res 105:1023–1029. doi:10.1007/s00436-009-1514-x

    Article  PubMed  Google Scholar 

  • Parr JB, Sevilleja JE, Samie A, Alcantara C, Stroup SE, Kohli A, Fayer R, Lima AA, Houpt ER, Guerrant RL (2007) Detection and quantification of Cryptosporidium in HCT-8 cells and human fecal specimens using real-time polymerase chain reaction. Am J Trop Med Hyg 76:938–942

  • Rochelle PA, Upton SJ, Montelone BA, Woods K (2005) The response of Cryptosporidium parvum to UV light. Trends Parasitol 21:81–87. doi:10.1016/j.pt.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  • Shahiduzzaman M, Dyachenko V, Obwaller A, Unglaube S, Daugschies A (2009) Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum. Vet Parasitol 162:271–277. doi:10.1016/j.vetpar.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Shahiduzzaman M, Dyachenko V, Keidel J, Schmäschke R, Daugschies A (2010) Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Vet Parasitol 167:43–49. doi:10.1016/j.vetpar.2009.09.042

    Article  CAS  PubMed  Google Scholar 

  • Valigurová A, Hofmannová L, Koudela B, Vávra J (2007) An ultrastructural comparison of the attachment sites between Gregarinasteini and Cryptosporidium muris. J Eukaryot Microbiol 54:495–510

    PubMed  Google Scholar 

  • Valigurová A, Jirků M, Koudela B, Gelnar M, Modrý D, Slapeta J (2008) Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol 38:913–922

    Article  PubMed  Google Scholar 

  • Varughese EA, Bennett-Stamper CL, Wymer LJ, Yadav JS (2014) A new in vitro model using small intestinal epithelial cells to enhance infection of Cryptosporidium parvum. J Microbiol Methods 106:47–54. doi:10.1016/j.mimet.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Elankumaran Y, Hijjawi N, Ryan U (2015) Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies. Exp Parasitol 153:55–62. doi:10.1016/j.exppara.2015.03.002

    Article  PubMed  Google Scholar 

  • Zhang L, Sheoran AS, Widmer G (2009) Cryptosporidium parvum DNA replication in cell-free culture. J Parasitol 95:1239–1242. doi:10.1645/GE-2052.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Paziewska-Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paziewska-Harris, A., Singer, M., Schoone, G. et al. Quantitative analysis of Cryptosporidium growth in in vitro culture—the impact of parasite density on the success of infection. Parasitol Res 115, 329–337 (2016). https://doi.org/10.1007/s00436-015-4751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4751-1

Keywords

Navigation