Skip to main content

Advertisement

Log in

Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neuronal and neuroendocrine cells possess the capacity for Ca2+-regulated discharge of messenger molecules, which they release into synapses or the blood stream, respectively. The neural-crest-derived sympathoadrenal lineage gives rise to the sympathetic neurons of the autonomic nervous system and the neuroendocrine chromaffin cells of the adrenal medulla. These cells provide an excellent model system for studying common and distinct developmental mechanisms underlying the acquisition of neuroendocrine and neuronal properties. As catecholaminergic cells, they possess common markers related to noradrenaline synthesis, storage and release, but they also display diverging gene expression patterns and are morphologically and functionally different. The precise mechanisms that underlie the diversification of sympathoadrenal cells into neurons and neuroendocrine cells are not fully understood. However, in the past we could show that the establishment of a chromaffin phenotype does not depend on signals from the adrenal cortex and that chromaffin cells and sympathetic neurons apparently differ from the onset of their catecholaminergic differentiation. Nevertheless, the cues that specifically induce neuroendocrine features remain elusive. The early development of the progenitors of chromaffin cells and sympathetic neurons depends on a common set of transcription factors with overlapping but distinct influences on their development. In addition to the well-defined role of transcription factors as developmental regulators, our understanding of post-transcriptional gene regulation by microRNAs has substantially increased within the last few decades. This review highlights the major similarities and differences between chromaffin cells and sympathetic neurons, summarizes our current knowledge of the roles of selected transcription factors, microRNAs and environmental signals for the neuroendocrine differentiation of sympathoadrenal cells, and draws comparisons with the development of other endocrine and neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdelmohsen K, Hutchison ER, Lee EK et al (2010) miR-375 inhibits differentiation of neurites by lowering HuD levels. Mol Cell Biol 30:4197–4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Åkerblom M, Sachdeva R, Barde I et al (2012) MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 32:8879–8889

    Article  PubMed  Google Scholar 

  • Anderson DJ (1993) Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J Neurobiol 24:185–198

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Axel R (1985) Molecular probes for the development and plasticity of neural crest derivatives. Cell 42:649–662

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH (1991) Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11:3507–3519

    CAS  PubMed  Google Scholar 

  • Anderson KD, Sengupta J, Morin M, Neve RL, Valenzuela CF, Perrone-Bizzozero NI (2001) Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in cortical neurons and retinoic acid-induced embryonic stem cells in vitro. Exp Neurol 168:250-258

    Article  CAS  PubMed  Google Scholar 

  • Arda HE, Benitez CM, Kim SK (2013) Gene regulatory networks governing pancreas development. Dev Cell 25:5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bohn MC, Goldstein M, Black IB (1981) Role of glucocorticoids in expression of the adrenergic phenotype in rat embryonic adrenal gland. Dev Biol 82:1–10

    Article  CAS  PubMed  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D et al (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  CAS  PubMed  Google Scholar 

  • Casarosa S, Fode C, Guillemot F (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534

    CAS  PubMed  Google Scholar 

  • Castro DS, Skowronska-Krawczyk D, Armant O et al (2006) Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell 11:831–844

    Article  CAS  PubMed  Google Scholar 

  • Dauger S, Pattyn A, Lofaso F et al (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130:6635–6642

    Article  CAS  PubMed  Google Scholar 

  • De Guevara ACL, Burigana F, Nicolini A, Lugnani F (2013) Neuroendocrine tumors of the lung: hystological classification, diagnosis, traditional and new therapeutic approaches. Curr Med Chem (in press)

  • Douarin NL, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Duggan A, Madathany T, de Castro SCP et al (2008) Transient expression of the conserved zinc finger gene INSM1 in progenitors and nascent neurons throughout embryonic and adult neurogenesis. J Comp Neurol 507:1497–1520

    Article  CAS  PubMed  Google Scholar 

  • Elshatory Y, Everhart D, Deng M et al (2007) Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 27:12707–12720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernsberger U, Esposito L, Partimo S et al (2005) Expression of neuronal markers suggests heterogeneity of chick sympathoadrenal cells prior to invasion of the adrenal anlagen. Cell Tissue Res 319:1–13

    Article  CAS  PubMed  Google Scholar 

  • Falix FA, Tjon-A-Loi MRS, Gaemers IC et al (2013) DLK1 protein expression during mouse development provides new insights into its function. ISRN Dev Biol. doi:10.1155/2013/628962

    Google Scholar 

  • Finotto S, Krieglstein K, Schober A et al (1999) Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 126:2935–2944

    CAS  PubMed  Google Scholar 

  • Geppert M, Goda Y, Hammer RE et al (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  CAS  PubMed  Google Scholar 

  • Gierl MS, Karoulias N, Wende H et al (2006) The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells. Genes Dev 20:2465–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemot F, Joyner AL (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev 42:171–185

    Article  CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE et al (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson N, Lao Y, Maximov A et al (2008) Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci U S A 105:3992–3997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustavsson N, Wei S-H, Hoang DN et al (2009) Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+−induced glucagon exocytosis in pancreas. J Physiol (Lond) 587:1169–1178

    Article  CAS  Google Scholar 

  • Gut P, Huber K, Lohr J et al (2005) Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development 132:4611–4619

    Article  CAS  PubMed  Google Scholar 

  • Hendershot TJ, Liu H, Clouthier DE et al (2008) Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch MR, Tiveron MC, Guillemot F et al (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599–608

    CAS  PubMed  Google Scholar 

  • Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, Yoo SH, Buettner R, Kim KS (2011) Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci 46:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou XE, Dahlström A (1996) Synaptic vesicle proteins in cells of the sympathoadrenal lineage. J Auton Nerv Syst 61:301–312

    Article  CAS  PubMed  Google Scholar 

  • Howard MJ, Stanke M, Schneider C et al (2000) The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127:4073–4081

    CAS  PubMed  Google Scholar 

  • Huang T, Liu Y, Huang M et al (2010) Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol 2:152–163

    Article  CAS  PubMed  Google Scholar 

  • Huber K (2006) The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298:335–343

    Article  CAS  PubMed  Google Scholar 

  • Huber K, Brühl B, Guillemot F et al (2002) Development of chromaffin cells depends on MASH1 function. Development 129:4729–4738

    CAS  PubMed  Google Scholar 

  • Huber K, Karch N, Ernsberger U et al (2005) The role of Phox2B in chromaffin cell development. Dev Biol 279:501–508

    Article  CAS  PubMed  Google Scholar 

  • Huber K, Kalcheim C, Unsicker K (2009) The development of the chromaffin cell lineage from the neural crest. Auton Neurosci Basic Clin 151:10–16

    Article  CAS  Google Scholar 

  • Huber K, Narasimhan P, Shtukmaster S et al (2013) The LIM-homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol 380:286–298

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Udaka N, Ikeda M et al (2001) Significance of proneural basic helix-loop-helix transcription factors in neuroendocrine differentiation of fetal lung epithelial cells and lung carcinoma cells. Histol Histopathol 16:335–343

    CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Miura M et al (2007) Mash1 regulates the development of C cells in mouse thyroid glands. Dev Dyn 236:262–270

    Article  CAS  PubMed  Google Scholar 

  • Kanji MS, Martin MG, Bhushan A (2013) Dicer1 is required to repress neuronal fate during endocrine cell maturation. Diabetes 62:1602–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloosterman WP, Lagendijk AK, Ketting RF et al (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5:e203

    Article  PubMed  PubMed Central  Google Scholar 

  • Laborda J (2000) The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol 15:119–129

    CAS  PubMed  Google Scholar 

  • Laborda J, Sausville EA, Hoffman T, Notario V (1993) dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem 268:3817–3820

    CAS  PubMed  Google Scholar 

  • Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567. doi:10.1126/science.1064344

    Article  CAS  PubMed  Google Scholar 

  • Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206

    Article  CAS  PubMed  Google Scholar 

  • Larsen JB, Jensen CH, Schrøder HD et al (1996) Fetal antigen 1 and growth hormone in pituitary somatotroph cells. Lancet 347:191

    Article  CAS  PubMed  Google Scholar 

  • Lee YL, Helman L, Hoffman T, Laborda J (1995) dlk, pG2 and Pref-1 mRNAs encode similar proteins belonging to the EGF-like superfamily. Identification of polymorphic variants of this RNA. Biochim Biophys Acta 1261:223–232

    Article  PubMed  Google Scholar 

  • Liang X, Song M-R, Xu Z et al (2011) Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd RV, Cano M, Rosa P et al (1988) Distribution of chromogranin A and secretogranin I (chromogranin B) in neuroendocrine cells and tumors. Am J Pathol 130:296–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loring JF, Erickson CA (1987) Neural crest cell migratory pathways in the trunk of the chick embryo. Dev Biol 121:220–236

    Article  CAS  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Tanaka K, Yamamoto A et al (1987) Immunoelectron microscopic localization of dopamine beta-hydroxylase and chromogranin A in adrenomedullary chromaffin cells. Cell Struct Funct 12:483–496

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi Y, Naranjo JR, Levi BZ, Pollard HB, Lelkes PI (1990) PC12 cells differentiate into chromaffin cell-like phenotype in coculture with adrenal medullary endothelial cells. Proc Natl Acad Sci U S A 87:6161-6165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriguchi T, Takako N, Hamada M et al (2006) Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133:3871–3881

    Article  CAS  PubMed  Google Scholar 

  • Morikawa Y, D’Autréaux F, Gershon MD, Cserjesi P (2007) Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami T, Oukouchi H, Uno Y et al (1989) Blood vascular beds of rat adrenal and accessory adrenal glands, with special reference to the corticomedullary portal system: a further scanning electron microscopic study of corrosion casts and tissue specimens. Arch Histol Cytol 52:461–476

    Article  CAS  PubMed  Google Scholar 

  • Neuman B, Wiedermann CJ, Fischer-Colbrie R et al (1984) Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens. Neuroscience 13:921–931

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa E, Osada H, Okazaki Y et al (2011) miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 71:6165–6173

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Ishikawa T, Ohta H (1986) Transdifferentiation of endocrine chromaffin cells into neuronal cells. Curr Top Dev Biol 20:99–110

    Article  CAS  PubMed  Google Scholar 

  • Parras CM, Schuurmans C, Scardigli R et al (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16:324–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattyn A, Morin X, Cremer H et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370. doi:10.1038/20700

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Guillemot F, Brunet J-F (2006) Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 295:67–75

    Article  CAS  PubMed  Google Scholar 

  • Pfaff SL, Mendelsohn M, Stewart CL et al (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84:309–320

    Article  CAS  PubMed  Google Scholar 

  • Pogoda H-M, von der Hardt S, Herzog W et al (2006) The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis. Development 133:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Potzner MR, Tsarovina K, Binder E et al (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Spranger M, Stoffel M (2007) microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9 (Suppl 2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106:5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiprich S, Stolt CC, Schreiner S et al (2008) SoxE proteins are differentially required in mouse adrenal gland development. Mol Biol Cell 19:1575–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reissmann E, Ernsberger U, Francis-West PH et al (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–2088

    CAS  PubMed  Google Scholar 

  • Rohrer H (2011) Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 34:1563–1573

    Article  PubMed  Google Scholar 

  • Rosenbaum JN, Duggan A, Garcia-Anoveros J (2011) Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic. Neural Dev 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan US, Ryan JW, Smith DS, Winkler H (1975) Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell 7:181–190

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Huber L, Majdazari A et al (2011) The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 355:89–100

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, Wicht H, Enderich J et al (1999) Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24:861–870

    Article  CAS  PubMed  Google Scholar 

  • Schober A, Unsicker K (2001) Growth and neurotrophic factors regulating development and maintenance of sympathetic preganglionic neurons. Int Rev Cytol 205:37–76

    Article  CAS  PubMed  Google Scholar 

  • Schonn J-S, Maximov A, Lao Y et al (2008) Synaptotagmin-1 and −7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 105:3998–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 106:6164–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtukmaster S, Schier MC, Huber K et al (2013) Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbusch J, Narasimhan P, Huber K et al (2013) Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Dykes IM, Liang X et al (2008) A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 11:1283–1293. doi:10.1038/nn.2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeyama N, Ano Y, Wu G et al (2009) Localization of insulinoma associated protein 2, IA-2 in mouse neuroendocrine tissues using two novel monoclonal antibodies. Life Sci 84:678–687

    Article  CAS  PubMed  Google Scholar 

  • Tornehave D, Jensen CH, Teisner B, Larsson LI (1996) FA1 immunoreactivity in endocrine tumours and during development of the human fetal pancreas; negative correlation with glucagon expression. Histochem Cell Biol 106:535–542

    Article  CAS  PubMed  Google Scholar 

  • Tsarovina K, Reiff T, Stubbusch J et al (2010) The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 30:10833–10843

    Article  CAS  PubMed  Google Scholar 

  • Unsicker K, Krisch B, Otten U, Thoenen H (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids. Proc Natl Acad Sci U S A 75:3498–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvanathan J, Lee S, Lee B et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel KS, Weston JA (1990) The sympathoadrenal lineage in avian embryos. I. Adrenal chromaffin cells lose neuronal traits during embryogenesis. Dev Biol 139:1–12

    Article  CAS  PubMed  Google Scholar 

  • Weihe E, Schäfer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 5:149–164. doi:10.1007/BF02736730

    Article  CAS  PubMed  Google Scholar 

  • Welcker JE, Hernandez-Miranda LR, Paul FE et al (2013) Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development 140:4947–4958

    Article  CAS  PubMed  Google Scholar 

  • Wildner H, Gierl MS, Strehle M et al (2008) Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 135:473–481

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Yang KY, Kalousova A et al (2005) The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes 54:3402–3409

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Wurtman RJ, Axelrod J (1966) Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 241:2301–2305

    CAS  PubMed  Google Scholar 

  • Yu J-Y, Chung K-H, Deo M et al (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314:2618–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehir A, Hua LL, Maska EL et al (2010) Dicer is required for survival of differentiating neural crest cells. Dev Biol 340:459–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Lin J, Chen J et al (2013a) MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J Biol Chem 288:10361–10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z-W, Men T, Feng R-C et al (2013b) miR-375 inhibits proliferation of mouse pancreatic progenitor cells by targeting YAP1. Cell Physiol Biochem 32:1808–1817

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Huber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, K. Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res 359, 333–341 (2015). https://doi.org/10.1007/s00441-014-1947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1947-0

Keywords

Navigation