Skip to main content
Log in

From endosymbionts to host communities: factors determining the reproductive success of arthropod vectors

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Elucidating the factors determining reproductive success has challenged scientists since Darwin, but the exact pathways that shape the evolution of life history traits by connecting extrinsic (e.g., landscape structure) and intrinsic (e.g., female’s age and endosymbionts) factors and reproductive success have rarely been studied. Here we collected female fleas from wild rodents in plots differing in their densities and proportions of the most dominant rodent species. We then combined path analysis and model selection approaches to explore the network of effects, ranging from micro to macroscales, determining the reproductive success of these fleas. Our results suggest that female reproductive success is directly and positively associated with their infection by Mycoplasma bacteria and their own body mass, and with the rodent species size and total density. In addition, we found evidence for indirect effects of rodent sex and rodent community diversity on female reproductive success. These results highlight the importance of exploring interrelated factors across organization scales while studying the reproductive success of wild organisms, and they have implications for the control of vector-borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baker JA, Heins DC, Foster SA, King RW (2008) An overview of life-history variation in female three-spine stickleback. Behaviour 145:579–602. doi:10.1163/156853908792451539

    Article  Google Scholar 

  • Balashov YS (1984) Interaction between blood sucking arthropods and their hosts, and its influence on vector potential. Annu Rev Entomol 29:137–156

    Article  PubMed  Google Scholar 

  • Bashey F (2006) Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata. Evolution 60:348–361. doi:10.1554/05-087.1

    Article  PubMed  Google Scholar 

  • Begon M et al (1999) Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc R Soc Lond B 266:1939–1945

    Article  CAS  Google Scholar 

  • Bezemer TM, Harvey JA, Mills NJ (2005) Influence of adult nutrition on the relationship between body size and reproductive parameters in a parasitoid wasp. Ecol Entomol 30:571–580. doi:10.1111/j.0307-6946.2005.00726.x

    Article  Google Scholar 

  • Booksmythe I, Mautz B, Davis J, Nakagawa S, Jennions MD (2017) Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol Rev 92:108–134. doi:10.1111/brv.12220

    Article  PubMed  Google Scholar 

  • Bosch J, Vicens N (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav Ecol Sociobiol 60:26–33. doi:10.1007/s00265-005-0134-4

    Article  Google Scholar 

  • Brady CJ, Noske RA (2006) Generalised regressions provide good estimates of insect and spider biomass in the monsoonal tropics of Australia. Aust J Entomol 45:187–191. doi:10.1111/j.1440-6055.2006.00533.x

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Harvard University, Cambridge

    Book  Google Scholar 

  • Calvitti M, Marini F, Desiderio A, Puggioli A, Moretti R (2015) Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: concerns with using artificial Wolbachia infection as a vector suppression tool. PLoS One 10. doi:10.1371/journal.pone.0121813 (ARTN e0121813)

  • Carriere Y, Roff DA (1995) The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets. Oecologia 102:389–396. doi:10.1007/Bf00329806

    Article  CAS  PubMed  Google Scholar 

  • Chomel BB et al (1996) Experimental transmission of Bartonella henselae by the cat flea. J Clin Microbiol 34:1952–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems, vol 29. University of Chicago, Chicago

    Google Scholar 

  • Cohen C, Einav M, Hawlena H (2015a) Path analyses of cross-sectional and longitudinal data suggest that variability in natural communities of blood-associated parasites is derived from host characteristics and not interspecific interactions. Parasit Vector 8:429. doi:10.1186/S13071-015-1029-5

    Article  Google Scholar 

  • Cohen C, Toh E, Munro D, Dong Q, Hawlena H (2015b) Similarities and seasonal variations in bacterial communities from the blood of rodents and from their flea vectors. ISME J 9:1662–1676

    Article  PubMed  PubMed Central  Google Scholar 

  • Degen AA, Kam M (1991) Average daily metabolic-rate of gerbils of two species—Gerbillus pyramidum and Gerbillus allenbyi. J Zool 223:143–149

    Article  Google Scholar 

  • Dickerson BR, Brinck KW, Willson MF, Bentzen P, Quinn TP (2005) Relative importance of salmon body size and arrival time at breeding grounds to reproductive success. Ecology 86:347–352. doi:10.1890/03-625

    Article  Google Scholar 

  • Donelson JM, McCormick MI, Munday PL (2008) Parental condition affects early life-history of a coral reef fish. J Exp Mar Biol Ecol 360:109–116. doi:10.1016/j.jembe.2008.04.007

    Article  Google Scholar 

  • Edgerly JS, Livdahl TP (1992) Density-dependent interactions within a complex life-cycle: the roles of cohort structure and mode of recruitment. J Anim Ecol 61:139–150. doi:10.2307/5517

    Article  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175. doi:10.1038/nature06737

    Article  CAS  PubMed  Google Scholar 

  • Ellers J, Driessen G, Sevenster JG (2000) The shape of the trade-off function between egg production and life span in the parasitoid Asobara tabida. Neth J Zool 50:29–36. doi:10.1163/156854200505784

    Article  Google Scholar 

  • Ewald PW (1983) Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst 14:465–485

    Article  Google Scholar 

  • Fincke OM (1988) Sources of variation in lifetime reproductive success in a nonterritorial damselfly (Odonata: Coenagrionidae). In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems, vol 3. University of Chicago, Chicago

    Google Scholar 

  • Fischer B, Taborsky B, Kokko H (2011) How to balance the offspring quality-quantity tradeoff when environmental cues are unreliable. Oikos 120:258–270. doi:10.1111/j.1600-0706.2010.18642.x

    Article  Google Scholar 

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369. doi:10.1146/annurev.ento.45.1.341

    Article  CAS  PubMed  Google Scholar 

  • Ganihar SR (1997) Biomass estimates of terrestrial arthropods based on body length. J Biosci 22:219–224. doi:10.1007/Bf02704734

    Article  Google Scholar 

  • Gavish Y et al (2014) Association of host and microbial species diversity across spatial scales in desert rodent communities. PLoS One 9:e109677. doi:10.1371/journal.pone.0109677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillespie SH, Smith GL, Osbourn AE (2004) Microbe-vector interactions in vector-borne diseases: sixty-third symposium of the society for general microbiology held at the University of Bath March 2004. Cambridge University, Cambridge

    Book  Google Scholar 

  • Gutiérrez R, Morick D, Cohen C, Hawlena H, Harrus S (2014) The effect of ecological and temporal factors on the composition of Bartonella infection in rodents and their fleas. ISME J 8:1598–1608. doi:10.1038/ismej.2014.22

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawlena H, Abramsky Z, Krasnov BR (2005) Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent. Oecologia 146:200–208. doi:10.1007/s00442-005-0187-0

    Article  CAS  PubMed  Google Scholar 

  • Hawlena H, Abramsky Z, Krasnov BR (2006a) Ectoparasites and age-dependent survival in a desert rodent. Oecologia 148:30–39. doi:10.1007/s00442-005-0345-4

    Article  PubMed  Google Scholar 

  • Hawlena H, Khokhlova IS, Abramsky Z, Krasnov BR (2006b) Age, intensity of infestation by flea parasites and body mass loss in a rodent host. Parasitology 133:187–193

    Article  CAS  PubMed  Google Scholar 

  • Hawlena H, Abramsky Z, Krasnov BR (2007a) Ultimate mechanisms of age-biased flea parasitism. Oecologia 154:601–609

    Article  PubMed  Google Scholar 

  • Hawlena H, Abramsky Z, Krasnov BR, Saltz D (2007b) Host defence versus intraspecific competition in the regulation of infrapopulations of the flea Xenopsylla conformis on its rodent host Meriones crassus. Int J Parasitol 37:919–925. doi:10.1016/j.ijpara.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  • Hawlena H et al (2013) The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME J 7:221–223. doi:10.1038/ismej.2012.71

    Article  CAS  PubMed  Google Scholar 

  • Herreras MV, Montero FE, Marcogliese DJ, Raga JA, Balbuena JA (2007) Phenotypic tradeoffs between egg number and egg size in three parasitic anisakid nematodes. Oikos 116:1737–1747. doi:10.1111/j.2007.0030-1299.16016.x

    Article  Google Scholar 

  • Hódar JA (1997) The use of regression equations for the estimation of prey length and biomass in diet studies of insectivore vertebrates. Miscel lània Zoològica 20:1–10

    Google Scholar 

  • Honek A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492. doi:10.2307/3544943

    Article  Google Scholar 

  • Horn DJ, Phillips ML, Koford RR, Clark WR, Sovada MA, Greenwood RJ (2005) Landscape composition, patch size, and distance to edges: interactions affecting duck reproductive success. Ecol Appl 15:1367–1376. doi:10.1890/03-5254

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Preston DL, Hoverman JT, Richgels KLD (2013) Biodiversity decreases disease through predictable changes in host community competence. Nature 494:230–233

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen C, Auer SK, Reznick DN (2011) A model for optimal offspring size in fish, including live-bearing and parental effects. Am Nat 177:E119–E135. doi:10.1086/659622

    Article  PubMed  Google Scholar 

  • Kedem H, Cohen C, Messika I, Einav M, Pilosof S, Hawlena H (2014) Multiple effects of host species diversity on co-existing host-specific and host-opportunistic microbes. Ecology 95:1173–1183. doi:10.1890/13-0678.1

    Article  PubMed  Google Scholar 

  • Khokhlova IS, Krasnov BR, Shenbrot GI, Degen AA (1994) patterns affecting seasonal body mass change in several species of rodents in the Ramon erosion cirque, Negev Highlands, Israel (in Russian with English summary). Zool Zhur 73:106–114

    Google Scholar 

  • Khokhlova I, Krasnov BR, Shenbrot GI, Degen AA (2001) Body mass and environment: a study in Negev rodents. Isr J Zool 47:1–13

    Article  Google Scholar 

  • Khokhlova IS, Fielden LJ, Williams JB, Degen AA, Krasnov BR (2013) Energy expenditure for egg production in arthropod ectoparasites: the effect of host species. Parasitology 140:1070–1077. doi:10.1017/S0031182013000449

    Article  PubMed  Google Scholar 

  • Khokhlova IS, Pilosof S, Fielden LJ, Degen AA, Krasnov BR (2014) A trade-off between quantity and quality of offspring in haematophagous ectoparasites: the effect of the level of specialization. J Anim Ecol 83:397–405. doi:10.1111/1365-2656.12134

    Article  PubMed  Google Scholar 

  • Krasnov BR (2008) Functional and evolutionary ecology of fleas: a model for ecological parasitology. Cambridge University, Cambridge

    Book  Google Scholar 

  • Krasnov B, Khokhlova I, Shenbrot G (2002a) The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology 83:164–175

    Article  Google Scholar 

  • Krasnov BR, Khokhlova IS, Oguzoglu I, Burdelova NV (2002b) Host discrimination by two desert fleas using an odour cue. Anim Behav 64:33–40

    Article  Google Scholar 

  • Krasnov BR, Burdelova NV, Khokhlova IS, Shenbrot GI, Degen A (2005a) Larval interspecific competition in two flea species parasitic on the same rodent host. Ecol Entomol 30:146–155

    Article  Google Scholar 

  • Krasnov BR, Khokhlova IS, Arakelyan MS, Degen AA (2005b) Is a starving host tastier? Reproduction in fleas parasitizing food-limited rodents. Funct Ecol 19:625–631

    Article  Google Scholar 

  • Krasnov BR, Morand S, Hawlena H, Khokhlova IS, Shenbrot GI (2005c) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217. doi:10.1007/s00442-005-0189-y

    Article  PubMed  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Hawlena H, Degen AA (2006) Temporal variation in parasite infestation of a host individual: does a parasite-free host remain uninfested permanently? Parasitol Res 99:541–545

    Article  PubMed  Google Scholar 

  • Krebs CJ, Keller BL, Tamarin RH (1969) Microtus population biology: demographic changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in southern Indiana. Ecology 50:587–607

    Article  Google Scholar 

  • Kudo S (2001) Intraclutch egg-size variation in acanthosomatid bugs: adaptive allocation of maternal investment? Oikos 92:208–214. doi:10.1034/j.1600-0706.2001.920202.x

    Article  Google Scholar 

  • Lajeunesse MJ, Forbes MR (2002) Host range and local parasite adaptation. Proc R Soc B 269:703–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefevre T, Thomas F (2008) Behind the scene, something else is pulling the strings: emphasizing parasitic manipulation in vector-borne diseases. Infect Genet Evol 8:504–519. doi:10.1016/j.meegid.2007.05.008

    Article  PubMed  Google Scholar 

  • Lim JN, Senior AM, Nakagawa S (2014) Heterogeneity in individual quality and reproductive trade-offs within species. Evolution 68:2306–2318. doi:10.1111/evo.12446

    PubMed  Google Scholar 

  • Lindstrom J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348. doi:10.1016/S0169-5347(99)01639-0

    Article  CAS  PubMed  Google Scholar 

  • Loot G, Poulet N, Brosse S, Tudesque L, Thomas F, Blanchet S (2011) Determinants of life-history traits in a fish ectoparasite: a hierarchical analysis. Parasitology 138:848–857. doi:10.1017/S003118201100014x

    Article  CAS  PubMed  Google Scholar 

  • Ma LM (2000) Body length of fleas in relation to some factors, and influence of host nutrition on fleas. Acta Parasitologica et Medica Entomologica Sinica 7:235–240

    Google Scholar 

  • Major RE, Kendal CE (1996) The contribution of artificial nest experiments to understanding avian reproductive success: a review of methods and conclusions. Ibis 138:298–307. doi:10.1111/j.1474-919X.1996.tb04342.x

    Article  Google Scholar 

  • Marshall DJ, Cook CN, Emlet RB (2006) Offspring size effects mediate competitive interactions in a colonial marine invertebrate. Ecology 87:214–225. doi:10.1890/05-0350

    Article  PubMed  Google Scholar 

  • Martin CA, Proulx R, Magnan P (2014) The biogeography of insects length-dry mass relationships. Insect Conserv Diver 7:413–419. doi:10.1111/icad.12063

    Article  Google Scholar 

  • Moller AP (1997) Developmental stability and fitness: a review. Am Nat 149:916–932

    Article  CAS  PubMed  Google Scholar 

  • Morick D, Krasnov BR, Khokhlova IS, Gottlieb Y, Harrus S (2011) Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera: Pulicidae). Mol Ecol 20:2864–2870. doi:10.1111/j.1365-294X.2011.05033.x

    Article  PubMed  Google Scholar 

  • Morick D, Krasnov BR, Khokhlova IS, Gottlieb Y, Harrus S (2013a) Transmission dynamics of Bartonella sp strain OE 1-1 in Sundevall’s Jirds (Meriones crassus). Appl Environ Microbiol 79:1258–1264. doi:10.1128/Aem.03011-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morick D et al (2013b) Effects of Bartonella spp. on flea feeding and reproductive performance. Appl Environ Microbiol 79:3438–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthén LK, Muthén BO (2012) Mplus user’s guide: statistical analysis with latent variables. Muthén & Muthén, Los Angeles

    Google Scholar 

  • Olofsson H, Ripa J, Jonzen N (2009) Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc R Soc B 276:2963–2969. doi:10.1098/rspb.2009.0500

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer AR, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Polak M (ed) Developmental instability: causes and consequences, vol 17. Oxford University, Oxford

    Google Scholar 

  • Parker GA, Begon M (1986) Optimal egg size and clutch size: effects of environment and maternal phenotype. Am Nat 128:573–592. doi:10.1086/284589

    Article  Google Scholar 

  • Pedhazur EJ (1983) Multiple-Regression in behavioral-research: explanation and prediction, 2nd edn. Harcourt Brace, Orlando

    Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891. doi:10.1111/j.1600-0706.2009.17643.x

    Article  Google Scholar 

  • R-Core-Team (2013) R: a language and environment for statistical computing foundation for statistical computing. Austria, Vienna

    Google Scholar 

  • Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15:421–425. doi:10.1016/S0169-5347(00)01941-8

    Article  CAS  PubMed  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer, Sunderland

    Google Scholar 

  • Rollinson N, Hutchings JA (2013) Environmental quality predicts optimal egg size in the wild. Am Nat 182:76–90. doi:10.1086/670648

    Article  PubMed  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res C 93:56–66. doi:10.1002/bdrc.20196

    Article  CAS  Google Scholar 

  • Rosenfeld CS, Roberts RM (2004) Maternal diet and other factors affecting offspring sex ratio: a review. Biol Reprod 71:1063–1070. doi:10.1095/biolreprod.104.030890

    Article  CAS  PubMed  Google Scholar 

  • Rosenheim JA, Alon U, Shinar G (2010) Evolutionary balancing of fitness limiting factors. Am Nat 175:662–674. doi:10.1086/652468

    Article  PubMed  Google Scholar 

  • Saccheri I, Hanski I (2006) Natural selection and population dynamics. Trends Ecol Evol 21:341–347. doi:10.1016/j.tree.2006.03.018

    Article  PubMed  Google Scholar 

  • Salkeld DJ, Padgett KA, Jones JH (2013) A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol Lett 16:679–686

    Article  PubMed  Google Scholar 

  • Sargent RD, Reid ML (1999) Unexpected offspring sex ratios in response to habitat quality in a size-dimorphic Bark beetle. Can J Zool 77:524–529. doi:10.1139/Cjz-77-4-524

    Article  Google Scholar 

  • Schoener TW (1980) Length-weight regressions in tropical and temperate forest-understory insects. Ann Entomol Soc Am 73:106–109

    Article  Google Scholar 

  • Segoli M, Rosenheim JA (2013) The link between host density and egg production in a parasitoid insect: comparison between agricultural and natural habitats. Funct Ecol 27:1224–1232. doi:10.1111/1365-2435.12109

    Article  Google Scholar 

  • Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA (2014) The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito Aedes aegypti. PLoS Negl Trop Dis 8:e3294. doi:10.1371/journal.pntd.0003294

    Article  PubMed  PubMed Central  Google Scholar 

  • Seidelmann K, Ulbrich K, Mielenz N (2010) Conditional sex allocation in the red mason bee, Osmia rufa. Behav Ecol Sociobiol 64:337–347. doi:10.1007/s00265-009-0850-2

    Article  Google Scholar 

  • Seppala O, Liljeroos K, Karvonen A, Jokela J (2008) Host condition as a constraint for parasite reproduction. Oikos 117:749–753. doi:10.1111/j.0030-1299.2008.16396.x

    Article  Google Scholar 

  • Sisterson MS (2009) Transmission of insect-vectored pathogens: effects of vector fitness as a function of infectivity status. Environ Entomol 38:345–355

    Article  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University, Oxford

    Google Scholar 

  • Tepedino VJ, Torchio PF (1982) Phenotypic variability in nesting success among Osmia lignaria propinqua females in a glasshouse environment: (Hymenoptera: Megachilidae). Ecol Entomol 7:453–462. doi:10.1111/j.1365-2311.1982.tb00688.x

    Article  Google Scholar 

  • Tripet F, Jacot A, Richner H (2002) Larval competition affects the life histories and dispersal behavior of an avian ectoparasite. Ecology 83:935–945

    Article  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary sex ratio of offspring. Science 179:90–92. doi:10.1126/science.179.4068.90

    Article  CAS  PubMed  Google Scholar 

  • Tsai ML, Li JJ, Dai CF (2001) How host size may constrain the evolution of parasite body size and clutch size. The parasitic isopod Ichthyoxenus fushanensis and its host fish, Varicorhinus bacbatulus, as an example. Oikos 92:13–19. doi:10.1034/j.1600-0706.2001.920102.x

    Article  Google Scholar 

  • Tschirren B, Bischoff LL, Saladin V, Richner H (2007) Host condition and host immunity affect parasite fitness in a bird-ectoparasite system. Funct Ecol 21:372–378

    Article  Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2014) Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol Lett 17:583–592. doi:10.1111/ele.12260

    Article  PubMed  Google Scholar 

  • Werner EE, Anholt BR (1993) Ecological consequences of the trade-off between growth and mortality-rates mediated by foraging activity. Am Nat 142:242–272. doi:10.1086/285537

    Article  CAS  PubMed  Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkington JG, Clutton-Brock TH, Kruuk LEB (2009) Trading offspring size for number in a variable environment: selection on reproductive investment in female Soay sheep. J Anim Ecol 78:354–364. doi:10.1111/j.1365-2656.2008.01489.x

    Article  CAS  PubMed  Google Scholar 

  • Wood CL, Lafferty KD, DeLeo G, Young HS, Hudson PJ, Kuris AM (2014) Does biodiversity protect humans against infectious disease? Ecology 95:817–832. doi:10.1890/13-1041.1

    Article  PubMed  Google Scholar 

  • Woods JE, Brewer MM, Hawley JR, Wisnewski N, Lappin MR (2005) Evaluation of experimental transmission of ‘Candidatus Mycoplasma haemominutum’ and Mycoplasma haemofelis by Ctenocephalides felis to cats. Am J Vet Res 66:1008–1012

    Article  PubMed  Google Scholar 

  • Woods JE, Wisnewski N, Lappin MR (2006) Attempted transmission of ‘Candidatus Mycoplasma haemominutum’ and Mycoplasma haemofelis by feeding cats infected Ctenocephalides felis. Am J Vet Res 67:494–497

    Article  PubMed  Google Scholar 

  • Woog F (2002) Reproductive success and pairing in Hawaiian Geese (Branta sandvicensis) in relation to age and body size. J Ornithol 143:43–50. doi:10.1007/bf02465457

    Article  Google Scholar 

  • Wootton JT (1994) Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151–165. doi:10.2307/1939391

    Article  Google Scholar 

  • Yuval B, Ben-Ami E, Behar A, Ben-Yosef M, Jurkevitch E (2013) The Mediterranean fruit fly and its bacteria: potential for improving sterile insect technique operations. J Appl Entomol 137:39–42

    Article  Google Scholar 

  • Zindel R, Gottlieb Y, Aebi A (2011) Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol 48:864–872. doi:10.1111/j.1365-2664.2011.01984.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Einav, Z. Sigal, E. Hyams, A. Novoplansky, M. Segoli, and A. Tsairi for valuable advice during this study. We are grateful to D.A. Apansakevich and N. Burdelova for the flea and tick taxonomic identifications. This study was supported by the Israel Science Foundation (ISF), Grant Number 1391/15 and by the Marie Curie Career Integration Grant (CIG) number FP7-293713 to H.H. and by the United States–Israel Binational Science Foundation, grant number 2012063 to H.H. (PI), K. Clay, C. Fuqua and Q. Dong. M.G. was sponsored by The Kreitman School of Advanced Graduate Studies (Ben-Gurion University of the Negev) and the Blaustein Center for Scientific Cooperation (Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev). This is publication number 939 of the Mitrani Department of Desert Ecology. The trapping and handling protocol was approved by the Ben-Gurion University Committee for the Ethical Care and Use of Animals in Experiments (permission # IL-14-03-2011) and by the Israel Nature and National Parks Protection Authority (permission # 2011/38146).

Author contribution statement

IM, HK, KC, CF, QD and HH conceived and designed the study. IM and HK performed the study. IM, MG, YG, and VC analyzed the data. IM, MG and HH wrote the manuscript; other authors provided editorial advice.

Data accessibility

Raw data and statistical scripts can be accessed via the public archive “Figshare.com”. Accession addresses are http://dx.doi.org/10.6084/m9.figshare.4818121 and http://dx.doi.org/10.6084/m9.figshare.4818136, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadas Hawlena.

Additional information

Communicated by George Heimpel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messika, I., Garrido, M., Kedem, H. et al. From endosymbionts to host communities: factors determining the reproductive success of arthropod vectors. Oecologia 184, 859–871 (2017). https://doi.org/10.1007/s00442-017-3906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3906-4

Keywords

Navigation