Skip to main content
Log in

Oxidation and reduction of sulfite contribute to susceptibility and detoxification of SO2 in Populus × canescens leaves

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L −1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L−1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L−1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asada K, Kiso K (1973) Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. Eur J Biochem 33:253–257

    Article  CAS  PubMed  Google Scholar 

  • Baldocchi DD (1993) Deposition of gaseous sulfur compounds to vegetation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 271–293

    Google Scholar 

  • Barrelet T, Ulrich A, Rennenberg H, Krähenbühl U (2006) Seasonal profiles of sulfur, phosphorus, and potassium in Norway spruce wood. Plant Biol 8:462–469

    Article  CAS  PubMed  Google Scholar 

  • Bennett JH, Hill AC (1973) Inhibition of apparent photosynthesis by air pollutants. J Environ Qual 2:526–530

    Article  CAS  Google Scholar 

  • Black VJ, Unsworth MH (1979) A system for measuring effects of sulfur dioxide on gas exchange of plants. J Exp Bot 30:81–88

    Article  CAS  Google Scholar 

  • Black VJ, Unsworth MH (1980) Stomatal responses to sulfur dioxide and vapour pressure deficit. J Exp Bot 31:667–677

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown KR, Van den Driessche R (2002) Growth and nutrition of hybrid poplars over 3 years after fertilization at planting. Can J For Res 32:226–232

    Article  Google Scholar 

  • Brunold C (1993) Regulatory interactions between sulfate and nitrate assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 61–75

    Google Scholar 

  • Brunold C, Suter M (1990) Adenosine 5′-phosphosulfate sulfotransferase. In: Lea P (ed) Methods in plant biochemistry. Academic Press, London, pp 339–343

    Google Scholar 

  • Brunold C, Landolt W, Lavanchy P (1983) SO2 and assimilatory sulfate reduction in beech leaves. Physiol Plant 59:313–318

    Article  CAS  Google Scholar 

  • Brychkova G, Xia Z, Yang G, Yesbergenova Z, Zhang Z, Davydov O, Fluhr R, Sagi M (2007) Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J 50:696–709

    Article  CAS  PubMed  Google Scholar 

  • Brychkova G, Grishkevich V, Fluhr R, Sagi M (2013) An essential role for tomato sulfite oxidase and enzymes of the sulfite network in maintaining leaf sulfite homeostasis. Plant Physiol 161:148–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cronk QCB (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytol 166:39–48

    Article  CAS  PubMed  Google Scholar 

  • Darrall NM (1986) The sensitivity of net photosynthesis in several plant species to short term fumigation with sulfur dioxide. J Exp Bot 37:1313–1322

    Article  CAS  Google Scholar 

  • Darrall NM (1989) The effects of air pollutants on physiological processes in plants. Plant, Cell Environ 12:1–30

    Article  CAS  Google Scholar 

  • De Kok LJ (1990) Sulfur metabolism in plants exposed to atmospheric sulfur. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants: fundamental, environmental and agricultural aspects. SPB Academic Publishing, The Hague, pp 111–130

    Google Scholar 

  • De Kok LJ, Tausz M (2001) The role of GSH in plant reaction and adaptation to air pollutants. In: Grill D, Tausz M, De Kok LJ (eds) Significance of GSH to plant adaptation to the environment. Kluwer, Dordrecht, pp 185–202

    Google Scholar 

  • De Kok LJ, Durenkamp M, Yang L, Stulen I (2007) Atmospheric sulfur. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in plants: an ecological perspective. Springer, Dordrecht, pp 91–106

    Chapter  Google Scholar 

  • Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hänsch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J Biol Chem 276:46989–46994

    Article  CAS  PubMed  Google Scholar 

  • Ernst WHO (1993) Ecological aspects of sulfur in higher plants: the impact of SO2 and the evolution of the biosynthesis of organic sulfur compounds on populations and ecosystems. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 295–313

    Google Scholar 

  • Ernst L, Goodger JQD, Alvarez S, Marsh EL, Berla B, Lockhart E (2010) Sulfate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. J Exp Bot 61:3395–3405

    Article  CAS  PubMed  Google Scholar 

  • Garsed SG, Read DJ (1977) Sulfur dioxide metabolism in soy-bean, Glycine max var. Biloxi. II. Biochemical distribution of 35SO2 products. New Phytol 99:583–592

    Article  Google Scholar 

  • Goodger JQD, Schachtman DP (2010) Re-examining ABA as the primary long-distance signal produced by water-stressed roots. Plant Signal Behav 5:1298–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamisch D, Randewig D, Schliesky S, Bräutigam A, Weber APM, Geffers R, Herschbach C, Rennenberg H, Mendel RR, Hänsch R (2012) Impact of SO2 on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing. New Phytol 196:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Mult S, Suter M, Rennenberg H, Herschbach C (2000) Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremula × P. alba) leaves. J Exp Bot 51:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. J Biol Chem 287:27941–27947

    Google Scholar 

  • Heilman PE, Hinckley TM, Roberts DA, Ceulemans R (1996) Production physiology. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implication for management and conservation. NRC-Research Press, Ottawa, p 482

    Google Scholar 

  • Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wildtype and transgenic poplar over-expressing γ-glutamylCys synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124:461–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. Calif. Agr. Expt. Sta. Circ, p 347

  • Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2012) Sulfur limitation and early sulfur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:1873–1893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hüve K, Dittrich A, Kindermann G, Slovik S, Heber U (1995) Detoxification of SO2 in conifers differing in SO2 tolerance. A comparison of Picea abies, Picea pungens and Pinus sylvestris. Planta 195:579–585

    Article  Google Scholar 

  • Kaiser G, Martinoia E, Schroppelmeier G, Heber U (1989) Active-transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol 133:756–763

    Article  CAS  Google Scholar 

  • Kaiser W, Dittrich A, Heber U (1993) Sulfate concentrations in Norway spruce needles in relation to atmospheric SO2: a comparison of trees from various forests in Germany with trees fumigated with SO2 in growth chambers. Tree Physiol 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Karnosky DF (1976) Threshold levels for foliar injury to Populus tremuloides by sulfur dioxide and ozone. Can J For Res 6:166–169

    Article  Google Scholar 

  • Karnosky DF (1977) Evidence for genetic control of response to sulfur dioxide and ozone in Populus tremuloides. Can J For Res 7:437–440

    Article  CAS  Google Scholar 

  • Keller T (1984) Direct effects of sulfur dioxide on trees. Philos Trans R Soc Lond, Ser B 305:317–326

    Article  CAS  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1981) Stomatal conductance and sulfur uptake of five clones of Populus tremuloides exposed to sulfur dioxide. Plant Physiol 67:990–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koffler BE, Maier R, Zechmann B (2011) Subcellular distribution of glutathione precursors in Arabidopsis thaliana. J Integr Plant Biol 53:930–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot Lond 97:479–495

    Article  CAS  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulfate assimilation and GSH synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski TT (1980) Responses of shade trees to pollution. J Arboric 6:29–41

    Google Scholar 

  • Kozlowski TT (1986) The impact of environmental pollution on shade trees. J Arboric 12:29–37

    Google Scholar 

  • Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant, Cell Environ 32:349–367

    Article  CAS  Google Scholar 

  • Lang C, Popko J, Wirtz M, Hell R, Herschbach C, Kreuzwieser J, Rennenberg H, Mendel RR, Hänsch R (2007) Sulfite oxidase as key enzyme for protecting plants against sulfur dioxide. Plant, Cell Environ 30:447–455

    Article  CAS  Google Scholar 

  • Lendzian KJ (1984) Permeability of plant cuticles to gaseous air pollutants. In: Kozioł MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 77–81

    Chapter  Google Scholar 

  • Maas FM, De Kok LJ, Strik-Timmer W, Kuiper PJC (1987) Plant responses to H2S and SO2 fumigation. II. Differences in metabolism of H2S and SO2 in spinach. Physiol Plant 70:722–728

    Article  CAS  Google Scholar 

  • Majernik O, Mansfield TA (1970) Direct effect of SO2 pollution on the degree of opening of stomata. Nature 227:377–378

    Article  CAS  PubMed  Google Scholar 

  • Majernik O, Mansfield TA (1972) Stomatal response to raised atmospheric CO2 concentrations during exposure of plants to SO2 pollution. Environ Pollut 3:1–7

    Article  CAS  Google Scholar 

  • Malhotra SS, Hocking D (1976) Biochemical and cytological effects of sulfur dioxide on plant metabolism. New Phytol 76:227–237

    Article  CAS  Google Scholar 

  • Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Matinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Mudd JB (1975) Sulfur dioxide. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Physiological ecology: a series of monographs, texts, and treatises. Academic Press, New York, pp 9–22

    Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of GSH in leaves of transgenic poplar overexpressing γ-glutamyl Cys synthetase. Plant Physiol 112:1071–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pachmayr F (1960) Vorkommen und Bestimmungen von Schwefel in Mineralwasser. Dissertation, University of Munich

  • Peiser G, Yang SF (1985) Biochemical and physiological effects of SO2 on nonphotosynthetic processes in plants. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation: physiology, ecology, and policy issues. Stanford University Press, Stanford, pp 148–161

    Google Scholar 

  • Pfanz H, Martinoia E, Lange O-L, Heber U (1987) Flux of SO2 into leaf cells and the cellular acidification by SO2. Plant Physiol 85:928–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polle A, Rennenberg H (1993) Significance of antioxidants in plant adaptation to environmental stress. In: Mansfield T, Fowden L, Stoddard F (eds) Plant adaptation to environmental stress. Chapman and Hall, London, pp 263–273

    Google Scholar 

  • Randewig D, Hamisch D, Herschbach C, Eiblmeier M, Gehl C, Jurgeleit J, Skerra J, Mendel RR, Rennenberg H, Hänsch R (2012) Sulfite oxidase controls sulfur metabolism under SO2 exposure in Arabidopsis thaliana. Plant, Cell Environ 35:100–115

    Article  CAS  Google Scholar 

  • Rennenberg H (1984) The fate of excess sulfur in higher plants. Annu Rev Plant Physiol 35:121–153

    Article  CAS  Google Scholar 

  • Scheerer U, Hänsch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C (2010) Sulfur flux through the sulfate assimilation pathway is differently controlled by adenosine 5′-phosphosulfate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR. J Exp Bot 61:609–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schreiner EJ (1959) Production of poplar timber in Europe and its significance and application in the United States. U.S. Department of Agriculture, Forest Service, Agriculture Handbook No. 150, p 5

  • Schupp R, Rennenberg H (1988) Diurnal changes in the GSH content of spruce needles (Picea abies L.). Plant Sci (Shannon, Ireland) 57:113–117

    Article  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Smith K (1980) Regulation of sulfate assimilation in tobacco cells. Effects of nitrogen and sulfur nutrition on sulfate permease and O-acetylserine sulfhydrylase. Plant Physiol 66:877–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer HC, Rennenberg H (1995) Regulation of GSH synthesis in leaves of transgenic poplar (Populus tremula × Populus alba) overexpression GSH synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula × P. alba) overexpressing GSH synthetase or GSH reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot 50:365–374

    Article  CAS  Google Scholar 

  • Tanaka K, Sugahara K (1980) Role of superoxide dismutase in the defense against SO2 toxicity and induction of superoxide dismutase with SO2 fumigation. Plant Cell Physiol 21:601–611

    CAS  Google Scholar 

  • Tanaka K, Otsubo T, Kondo N (1982) Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol 23:1009–1018

    CAS  Google Scholar 

  • Tausz M, Van der Kooij TAW, Müller M, De Kok LJ, Grill D (1998) Uptake and metabolism of oxidized and reduced sulfur pollutants by spruce trees. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys Publishers, Leiden, pp 457–460

    Google Scholar 

  • Tingey DT, Olszyk DM (1985) Intraspecies variability in metabolic responses to SO2. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation: physiology, ecology, and policy issues. Stanford University Press, Stanford, pp 178–205

    Google Scholar 

  • Tsakraklides G, Martin M, Chalam R, Tarczynski MC, Schmidt A, Leustek T (2002) Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5-adenylylsulfate reductase from Pseudomonas aeruginosa. Plant J 32:879–889

    Article  CAS  PubMed  Google Scholar 

  • Tschanz A, Landoit W, Bleuler P, Brunold C (1986) Effect of SO2, on the activity of adenosine 5′-phosphosulfate sulfotransferase from spruce trees (Picea abies) in fumigation chambers and under field conditions. Physiol Plant 67:235–241

    Article  CAS  Google Scholar 

  • Urban O, Sprtová M, Kosvancová M, Tomásková I, Lichtenthaler HK, Marek MV (2008) Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. Tree Physiol 28:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Van der Kooij TAW, De Kok LJ (1998) Kinetics of deposition of SO2 and H2S to shoots of Arabidopsis thaliana L. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys Publishers, Leiden, pp 479–481

    Google Scholar 

  • Van der Kooij TAW, De Kok LJ, Haneklaus S, Schnug E (1997) Uptake and metabolism of sulfur dioxide by Arabidopsis thaliana. New Phytol 135:101–107

    Article  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold C (2002) Flux control of sulfate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulfate reductase is more susceptible than ATP sulfurylase to negative control by thiols. Plant J 31:729–740

    Article  CAS  PubMed  Google Scholar 

  • Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wildhagen H, Dürr J, Ehlting B, Rennenberg H (2010) Seasonal nitrogen cycling in the bark of field-grown Grey poplar is correlated with meteorological factors and gene expression of bark storage proteins. Tree Physiol 30:1096–1110

    Article  CAS  PubMed  Google Scholar 

  • Winner WE, Mooney HA (1980) Ecology of SO2 resistance: II. Photosynthetic changes in shrubs in relation to SO2 absorption and stomatal behaviour. Oecologia 44:296–302

    Article  Google Scholar 

  • Winner WE, Mooney HA, Williams K, Von Caemmerer S (1985) Measuring and assessing SO2 effects on photosynthesis and plant growth. In: Winner WE, Mooney HA, Goldstein RA (eds) Sulfur dioxide and vegetation: physiology, ecology, and policy issues. Stanford University Press, Stanford, pp 118–132

    Google Scholar 

  • Wirtz M, Beard KFM, Lee CP, Boltz A, Schwarzländer M, Fuchs C, Meyer AJ, Heeg C, Sweetlove LJ, Ratcliffe RG, Hell R (2012) Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. J Biol Chem 287:27941–27947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yarmolinsky D, Brychkova G, Fluhr R, Sagi M (2013) Sulfite reductase protects plants against sulfite toxicity. Plant Physiol 161:725–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler I (1974) Action of sulfite on plant malate dehydrogenase. Phytochemistry 13:2411–2416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge to Marion Kay, Jessica Skerra, Susanne Mult and Michael Rienks for excellent technical help. This work was supported by a Grant of the Deutsche Forschungsgemeinschaft to HR under contract no. Re515/32 and RH under contract no. HA3107/4.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Herschbach.

Additional information

Communicated by W. Bilger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2013_958_MOESM1_ESM.jpg

Supplementary Fig. S1. Example of the continuously measured gas exchange parameters of one enclosure including four plants of wild type poplar during one SO2 fumigation experiment. Rectangles mark data of CO2 assimilation rate and respiration rate (red; n=4) used for statistical analyses. The hourly recorded SO2 uptake rate over the fumigation period including light and dark periods is used to calculate total SO2 uptake (µmol g-1 FW 66 h-1) (blue; n=55) (JPEG 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randewig, D., Hamisch, D., Eiblmeier, M. et al. Oxidation and reduction of sulfite contribute to susceptibility and detoxification of SO2 in Populus × canescens leaves. Trees 28, 399–411 (2014). https://doi.org/10.1007/s00468-013-0958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0958-x

Keywords

Navigation